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Valuation Theory



Absolute Values
Throughout, let F be a field.

Definition

An absolute value on F is a map ∣ ⋅ ∣ ∶ F → R such that for all a,b ∈ F :

∣a∣ ≥ 0, with equality if and only if a = 0

∣ab∣ = ∣a∣∣b∣
∣a + b∣ ≤ ∣a∣ + ∣b∣ (archimedian) or

∣a + b∣ ≤ max{∣a∣, ∣b∣} (non-archimedian)

Examples

The well-known absolute value on Q (or on R or on C) is an
archimedian absolute value in the sense of the above definition.

The trivial absolute value on any field F , defined via ∣a∣ = 0 when
a = 0 and ∣a∣ = 1 otherwise, is a non-archimedian absolute value.
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p-Adic Absolute Values on Q

Let p be ay prime number, and define a map ∣ ⋅ ∣p on Q as follows:

For r ∈ Q∗, write r = pn
a

b
with n ∈ Z and p ∤ ab and set

∣r ∣p = p−n.

Then ∣ ⋅ ∣p is a non-archimedian absolute value on Q, called the p-adic
absolute value on Q.

Theorem (Ostrowski)

The p-adic absolute values, along with the trivial and the ordinary absolute
value, are the only valuations on Q.
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Rational Function Fields

Notation

For any field K :

K [x] denotes the ring of polynomials in x with coefficients in K .

K(x) denotes the field of rational functions in x with coefficients in K :

K(x) = { f (x)
g(x) ∣ f (x),g(x) ∈ K [x] with g(x) ≠ 0}.

Note that F = K(x) is our first example of an algebraic function field.
More formally:

Definition

A rational function field F /K is a field F of the form F = K(x) where
x ∈ F is transcendental over K .
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Absolute Values on K(x)
Fix a constant c ∈ R, c > 1, and let r(x) ∈ K(x) be nonzero.

p-adic absolute values on K(x):
Let p(x) be any monic irreducible polynomial in K [x], and write
r(x) = p(x)na(x)/b(x) with n ∈ Z and p(x) ∤ a(x)b(x). Define

∣r(x)∣p(x) = c−n.

Then ∣ ⋅ ∣p(x) is a non-archimedian absolute value on K(x).

Infinite absolute value on K(x):
Write r(x) = f (x)/g(x) and define

∣r(x)∣∞ = cdeg(f )−deg(g).

Then ∣ ⋅ ∣∞ is a non-archimedian absolute value on K(x).
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Remarks on Absolute Values on K(x)

These, plus the trivial absolute value, are essentially all the absolute
values on K(x), up to trivial modifications such as

▸ using a different constant c ,

▸ using a different normalization on the irreducible polynomials
p(x).

All absolute values on K(x) are non-archimedian (different from Q!)

When K = Fq is a finite field of order q, one usually chooses c = q.

When K is a field of characteristic 0, one usually chooses
c = e = 2.71828 . . ..

Renate Scheidler (Calgary) Number Theory in Function Fields UNGC, Summer 2016 8 / 92



Valuations

Definition

A valuation on F is a map v ∶ F → R ∪ {∞} such that for all a,b ∈ F :

v(a) =∞ if and only if a = 0
v(ab) = v(a) + v(b)
v(a + b) ≥ min{v(a), v(b)}

The pair (F , v) is called a valued field.

(Here, ∞ ≥∞ ≥ n and ∞+∞ =∞+ n =∞ for all n ∈ Z.)

Remark

Let c > 1 be any constant. Then v is a valuation on F if and only if
∣ ⋅ ∣ ∶= c−v(⋅) is a non-archimedian absolute value on F (with c−∞ ∶= 0).
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Examples

Trivial valuation: for any a ∈ F , define v(a) =∞ when a = 0 and
v(a) = 0 otherwise. Then v is a valuation on F .

p-adic valuations on Q: for any prime p and r = pna/b ∈ Q∗, define
vp(r) = n. Then vp is a valuation on Q.

p-adic valuations on K(x): for any monic irreducible polynomial
p(x) ∈ K [x] and r(x) = p(x)na(x)/b(x) ∈ K(x)∗, define
vp(x)(r(x)) = n. Then vp(x) is a valuation on K(x).

Infinite valuation on K(x): for r(x) = f (x)/g(x) ∈ K(x)∗, define
v∞(r(x)) = deg(g) − deg(f ). Then v∞ is a valuation on K(x).
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More on Valuations

Definition

A valuation v is discrete if it takes on values in Z ∪ {∞} and normalized if
there exists an element u ∈ F with v(u) = 1. Such an element u is a
uniformizer (or prime element) for v .

Remarks

All four valuations from the previous slide are discrete.

Every p-adic valuation on Q is normalized with uniformizer p.

Every p-adic valuation on K(x) is normalized with uniformizer p(x).

The infinite valuation on K(x) is normalized with uniformizer 1/x .

The p-adic and infinite valuations on K(x) all satisfy v(a) = 0 for all
a ∈ K∗. They constitute all the valuations on K(x) with that property.

Remark

A discrete valuation is normalized if and only if it is surjective.
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Valuation Rings

For a discretely valued field (F , v), define the following subsets of F :

Ov = {a ∈ F ∣ v(a) ≥ 0},
O∗

v = {a ∈ F ∣ v(a) = 0},
Pv = {a ∈ F ∣ v(a) > 0} = Ov ∖O∗

v .

Fv = Ov /Pv .

Properties:

Ov is an integral domain and a discrete valuation ring, i.e. Ov ⫋ F
and for a ∈ F ∗, we have a ∈ Ov or a−1 ∈ Ov .

O∗

v is the unit group of Ov .

Pv is the unique maximal ideal of Ov ; in particular, Fv is a field called
the residue field of v .

Every a ∈ F ∗ has a unique representation a = εun with ε ∈ O∗

v and
n = v(a) ∈ Z.

Ov is principal ideal domain whose ideals are generated by the
non-negative powers of u; in particular, u is a generator of Pv .
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Example: p-Adic Valuations

For any p-adic valuation vp on Q:

Ovp = {r ∈ Q ∣ r = a/b with gcd(a,b) = 1 and p ∤ b}
O∗

vp = {r ∈ Q ∣ r = a/b with gcd(a,b) = 1 and p ∤ ab}
Pvp = {r ∈ Q ∣ r = a/b with gcd(a,b) = 1, p ∣ a, p ∤ b}
Fvp = Fp.

Similarly, for any p-adic valuation vp(x) on K(x):

Ovp(x) = {r(x) ∈ K(x) ∣ r(x) = a(x)/b(x) with gcd(a,b) = 1, p(x) ∤ b(x)}
O∗

vp(x) = {r(x) ∈ K(x) ∣ r(x) = a(x)/b(x) with gcd(a,b) = 1,

p(x) ∤ a(x)b(x)}
Pvp(x) = {r(x) ∈ K(x) ∣ (x) = a(x)/b(x) with gcd(a,b) = 1,

p(x) ∣ a(x), p(x) ∤ b(x)}
Fvp(x) = K [x]/(p(x)) where (p(x)) is the K [x]-ideal generated by p(x)
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Example: Infinite Valuation on K(x)
For the infinite valuation v∞ on K(x):

Ov∞ = {r(x) ∈ K(x) ∣ r(x) = f (x)/g(x) with deg(f ) ≤ deg(g)}
O∗

v∞ = {r(x) ∈ K(x) ∣ r(x) = f (x)/g(x) with deg(f ) = deg(g)}
Pv∞ = {r(x) ∈ K(x) ∣ (x) = f (x)/g(x) with deg(f ) < deg(g)}
Fv∞ = K

We will henceforth write O∞, P∞, F∞ for brevity.

Example

v∞ ( x − 7

2x3 + 3x
) = 2 and

x − 7

2x3 + 3x
= (1

x
)

2

⋅ x3 − 7x2

2x3 + 3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈O∗∞

.
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Places

Definition

A place of F is the unique maximal ideal of a discrete valuation ring in F .
The set of places of F is denoted P(F ).

Theorem

There is a one-to-one correspondence between the set of normalized
discrete valuations on F and the set P(F ) of places of F as follows:

If v is a normalized discrete valuation on F , then Pv ∈ P(F ) is the
unique maximal ideal in the discrete valuation ring Ov .
If P is a place of F , then the discrete valuation ring O ⊂ F containing
P as its unique maximal ideal is determined, and P defines a discrete
normalized valuation on F as follows: if u is any generator of P, then
every element a ∈ F ∗ has a unique representation a = εun with n ∈ Z
and ε a unit in O, and we define v(a) = n and v(0) =∞. Note that u
is a uniformizer for v .
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Examples of Places
For any prime number p, the set

P = {r ∈ Q ∣ r = a/b with gcd(a,b) = 1, p ∣ a, p ∤ b} = Pvp

is a place of Q with corresponding valuation vp.

The set P(K(x)) consists of the finite places of K(x) of the form
Pp(x) = Pvp(x) where p(x) is a monic irreducible polynomial in K [x] and
the infinite place of K(x) of the form P∞ = Pv∞ .

Let F /Q be a number field with ring of integers OF (the integral closure
of Z in F ). Then every prime ideal in OF is a place of F .

Let F be a finite algebraic extension of Fq(x) and let OF be the integral
closure of the polynomial ring Fq[x] in F . Then every prime ideal in OF is
a place of K . Note that there are other places of F that do not arise in
this way (more on this later).
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Function Fields



Function Fields

Definition

Let K be a field. An algebraic function field F /K in one variable over K is
a field extension F ⊇ K such that F is finite algebraic extension of K(x)
for some x ∈ F that is transcendental over K .

We will shorten this terminology to just “function field”.

In other words, a function field is of the form F = K(x , y) where

x ∈ F is transcendental over K ,

y ∈ F is algebraic over K(x), so there exists a monic irreducible
polynomial φ(Y ) ∈ K(x)[Y ] of degree n = [F ∶ K(x)] with φ(y) = 0.

Remark

It is important to note that there are many choices for x , and the degree
[F ∶ K(x)] may change with the choice of x . This is different from
number fields where the degree over Q is fixed.
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Examples of Function Fields

A function field is rational if F = K(x) for some element x ∈ F that is
transcendental over K .

The meromorphic functions on a compact Riemann surface form a
function field over C (the complex numbers).

Let E ∶ y2 = x3 +Ax +B be an elliptic curve defined over a field K of
characteristic different from 2 and 3. Then F = K(x , y) is a function field
over K . Note that [F ∶ K(x)] = 2 and [F ∶ K(y)] = 3.

More generally, consider the curve y2 = f (x) where f (x) ∈ K [x] is a
square-free polynomial and K has characteristic different from 2. Then
F = K(x , y) is a function field over K whose elements are of the form

F = { a(x) + b(x)y ∣ a(x),b(x) ∈ K(x) }.

Note that [F ∶ K(x)] = 2 and [F ∶ K(y)] = deg(f ).
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Function Fields of Curves

Definition

A plane affine irreducible algebraic curve over a field K is the zero locus of
an irreducible polynomial Φ(x ,Y ) in two variables with coefficients in K .

We will shorten this terminology to just “curve”.

Definition

The coordinate ring of a curve C ∶ Φ(x , y) = 0 over a field K is the ring
K [x ,Y ]/(Φ(x ,Y )) where (Φ(x , y)) is the principal K [x , y]-ideal
generated by Φ(x , y).
The function field of C is the field of fractions of its coordinate ring.

Remark: The function field of a curve is a function field as defined
previously. Conversely, every function field F /K is the function field of the
curve given by a minimal polynomial of F /K(x).

Note that a function field has many defining curves.
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Constant Fields

Definition

The constant field of a function field F /K is the algebraic closure of K in
F , i.e. the field

K̃ = {z ∈ F ∣ z is algebraic over K}.

F /K is a geometric function field if K̃ = K .

Sometimes K̃ is called the “full” or the “exact” field of constants of F /K .

Remark

K ⊆ K̃ ⫋ F , and every element in F ∖ K̃ is transcendental over K .

Remark

Write F = K(x , y). Then F /K is a geometric function field if and only if
the minimal polynomial of y over K(x) is absolutely irreducible, i.e.
irreducible over K(x) where K is the algebraic closure of K .
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Examples

K(x)/K is always geometric.

If K is algebraically closed (e.g. K = C), then any F /K is geometric.

Let F = K(x , y) where y2 = f (x) with f (x) ∈ K [x] square-free. Then
F /K(x) is geometric if and only if f (x) is non-constant.

Suppose −1 is not a square in K (e.g. K = R or K = Fq with
q ≡ 3 (mod 4)), and let F = K(x , y) where x2 + y4 = 0. Then K̃ = K(i)
where i ∉ K is a square root of −1. So [K̃ ∶ K ] = 2, and F /K is not
geometric. Note that [F ∶ K(x)] = 4 and [F ∶ K̃(x)] = [K̃(x) ∶ K(x)] = 2.
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Residue Fields and Degrees

Recall that a place P of a field F is the unique maximal ideal of some
discrete valuation ring OP of F , and its residue field is FP = OP/P.

Remark: K̃ ⊂ OP for all P ∈ P(F ).

Definition

Let F /K be a geometric function field and P a place of F . Then the
degree of P is the field extension degree deg(P) ∶= [FP ∶ K ]. Places of
degree one are called rational. The set of rational places of F is denoted
P1(F ).

Remark

deg(P) ≤ [F ∶ K(x)] for any x ∈ P, so deg(P) is always finite.
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Example: Residue Fields of Places of K(x)
For any finite place Pp(x) of K(x), a K−basis of FP is

{1, x , . . . , xdeg(p)−1}, so deg(Pp(x)) = deg(p).

For the infinite place P∞ of K(x), we have FP = K and hence
deg(P∞) = 1.

K is algebraically closed if and only if the finite places of K(x)
correspond exactly the linear polynomials x + α with α ∈ K , i.e. if and
only if all the places of K(x) are rational, so P(K(x)) = P1(K(x)).

In this case, there is a one-to-one correspondence between P1(K(x))
and the points on the projective line P1(K) ∶= K ∪ {∞} via

P1(K(x)) ←→ P1(K) via x + α ←→ α , 1/x ←→ ∞ .

Hence the name ‘infinite place” — think of this as “substituting
x = 0” into the uniformizer.
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Values of Functions

Recall that h(x) = q(x)(x − α) + h(α) for all h(x) ∈ K [x] and α ∈ K .

One can think of h(a) = h(x)(mod x − α) as the “value of h(x) at the
place x − α”. For h(x) ∈ K , this value is the same for any α, i.e. constant.

More generally, for any place P of a function field F /K , one can interpret
cosets z + P as “values” z(P) which are “constant” for elements z ∈ K .
Hence the terms “function field” and “constant field”.

Let r(x) = f (x)/g(x) ∈ K(x) with gcd(f ,g) = 1. Consider a finite place
Px−α (α ∈ K ). Then

vx−α(r(x)) > 0 Ô⇒ f (α) = 0, g(α) ≠ 0 Ô⇒ α is a zero of r(x).
vx−α(r(x)) < 0 Ô⇒ g(α) = 0, f (α) ≠ 0 Ô⇒ α is a pole of r(x).
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Zeros and Poles

Definition

Let P be a place of a function field F /K and z ∈ F . Then P is a zero of z
if vP(z) > 0 and a pole of z if vP(z) < 0. More generally, for any positive
integer m, P is a zero of z of order (or multiplicity) m if vp(z) = m and a
pole of z of order m if vP(z) = −m.

Properties:

Every transcendental element in F /K has at least one zero and at
least one pole. In particular, if F /K is geometric, then every element
in F ∖K has at least one zero and at least one pole.

Every non-zero element in F has only finitely many zeros and poles.

When counted with multiplicities, every non-zero element in F has
the same number of zeros and poles.
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Divisors and Genus



Recollection: Ideals in Number Fields

Recall that in a number field:

Every ideal in the ring of integers has a unique factorization into
prime ideals.

By allowing negative exponents, this extends to fractional ideals. So
the prime ideals generate the group of fractional ideals.

Two non-zero fractional ideals are equivalent if they differ by a factor
that is a principal ideal.

The ideal class group is the group of non-zero fractional ideals modulo
(principal) equivalence whose order is class number of the field. It is a
finite abelian group that is an important invariant of the field.

We now consider analogous notions in function fields, with prime ideals
replaced by places, and multiplication (products) replaced by addition
(sums).

Assume henceforth that F /K is a geometric function field.
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Divisors

Definition

The Divisor group of F /K , denoted Div(F ), is the free group generated by
the places of F /K . Its elements, called divisors of F , are formal finite sums
of places.

Let

D = ∑
P∈P(F)

nPP with nP ∈ Z and nP = 0 for almost all P ∈ P(F ).

Then

the value of D at P is vP(D) ∶= nP for any P ∈ P(F ).

the support of D is supp(D) ∶= {P ∈ P(F ) ∣ vP(D) ≠ 0}.

the degree of D is deg(D) ∶= ∑P∈P(F) nP deg(P).

D is a prime divisor if it is of the form D = P for some P ∈ P(F ).
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More on Divisors

Remarks

Every divisor is a unique sum of finitely many prime divisors (note that
some prime divisors in the support may have negative coefficients).

The notions of value and degree are compatible with their previous
definitions. In particular:

▸ For any place P of F , the normalized discrete valuation on F
associated to P extends to a group homomorphism
vP ∶ Div(F )→ Z ∪ {∞}.

▸ The degree map defined on places of F extends to a group
homomorphism deg ∶ Div(F )→ Z ∪ {∞} whose kernel is the
subgroup Div0(F ) of Div(F ) consisting of all degree zero
divisors.

F. K. Schmidt proved that every function field F over a finite field
K = Fq has a divisor of degree one, so in this case, the degree
homomorphism on Div(F ) is surjective.
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Principal Divisors

Definition

A divisor D ∈ Div(F ) is principal if it is of the form

D = ∑
P∈P(F)

vP(z)P

for some z ∈ F ∗. Write D = div(z).

Definition

The zero divisor and pole divisor of a principal divisor div(z) are the
respective divisors

div(z)0 = ∑
vP(z)>0

vP(z)P , div(z)∞ = − ∑
vP(z)<0

vP(z)P .

So div(z) = div(z)0 − div(z)∞.

Example: In F = K(x), we have div(x)0 = Px and div(x)∞ = P∞.
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More on Principal Divisors

Theorem

Let x ∈ F ∖K . Then deg(div(x)0) = deg(div(x)∞) = [F ∶ K(x)].
It follows that deg(div(z)) = 0, so the principal divisors form a subgroup of
Div0(F ), denoted Prin(F ).

Definition

Two divisors D1,D2 ∈ Div(F ) are (linearly) equivalent, denoted D1 ∼ D2, if
D1 −D2 ∈ Prin(F ).

Remark and Notation

Linear equivalence is an equivalence relation. The class of a divisor D
under linear equivalence is denoted [D].
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Class Group and Zero Class Group

Definition

The factor groups

Cl(F ) = Div(F )/Prin(F ) and Cl0(F ) = Div0(F )/Prin(F )

are the divisor class group and the degree zero divisor class group of F /K ,
respectively. (Usually abbreviated to just class group and zero class group.)

Remarks and Definition

Both Cl(F ) and Cl0(F ) are abelian groups.

Cl(F ) is always infinite, but Cl0(F ) may or may not be infinite. It it
is finite, then the order hF is called the degree zero divisor class
number (or just class number) of F /K . We will see later on that hF
is always finite for a function field over a finite field.

Sometimes the zero class group is also called the Jacobian of F /K .
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More on Class Groups

Theorem

Every rational function field has class number one.

Remark

There are 8 non-rational function fields F /Fq of class number one. All
have q ≤ 4, and defining curves for all of them are known.

Theorem

Let F /K be a non-rational function field that has a rational place,
denoted P∞. Then the map Φ ∶ P1(F )→ Cl0(F ) via P ↦ [P − P∞] is
injective.

The above embedding imposes an abelian group structure on P1(F ). Note
that this group structure is non-canonical (depends on the choice of P∞).
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Effective Divisors

Definition

Define a partial order ≥ on Div(F ) via

D1 ≥ D2 ⇔ vP(D1) ≥ vP(D2) for all P ∈ P(F ).

A divisor D ∈ Div(F ) is effective (or integral or positive) if D ≥ 0.

Examples

The trivial divisor D = 0 is effective.
Every prime divisor is effective.
The zero and pole divisors of a principal divisor are effective.
The sum of two effective divisors is effective. So the effective divisors
form a sub-monoid of Div(F ).
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Riemann-Roch Spaces

Definition

The Riemann-Roch space of a divisor D ∈ Div(F ) is the set

L(D) = {x ∈ F ∣ div(x) +D ≥ 0} ∪ {0}.

Interpretation

L(D) consists of all x ∈ F such that

If D has a pole of order m at P, then x has a zero of order at least m
at P.

If D has a zero of order m at P, then x may have a pole at P, but its
order cannot exceed m.
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Examples

Examples

Let F = K(x).

L(nP∞) = {f (x) ∈ K [x] ∣ deg(f ) ≤ n} for n ≥ 0.

If D = −3Px−1 + 2Px−2 + 4Px−7, then

L(D) = { (x − 1)3

(x − 2)2(x − 7)4
r(x) ∣ r(x) ∈ K(x),deg(r) ≤ 3} .

For any function field F /K , if P ∈ P(F ) and n ∈ Z with n > 0, then

L(nP) ∖ L((n − 1)P) = {x ∈ F ∣ div(x)∞ = nP}.
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Properties of Riemann-Roch Spaces

x ∈ L(D) if and only if vP(x) ≥ −vP(D) for all P ∈ P(F ).

L(D) is a K -vector space.

If D1 ∼ D2, then L(D1) ≅ L(D2) (isomorphic as K -vector spaces).

L(0) = K .

If deg(D) < 0 or D ∈ Div0(F ) ∖ Prin(F ), then L(D) = {0}.

L(D) ≠ {0} if and only if the class [D] contains an effective divisor.

Notation

The K -vector space dimension of L(D) is denoted `(D) = dimK(L(D)).

Remark

Both deg(D) and `(D) depend only on the divisor class [D].
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Genus

Definition

The genus of F /K is g = max{deg(D) − `(D) + 1 ∣ D ∈ Div(F )}.

Remark

g ≥ 0. (Because deg(0) − `(0) + 1 = 0.)

Theorem (Hasse-Weil)

Let F /Fq be a function field of genus g over a finite field of order q.

q +1−2g
√
q ≤ ∣P1(F )∣ ≤ q +1+2g

√
q (so ∣P1(F )∣ ≈ q for q large).

(√q − 1)2g ≤ ∣Cl0(F )∣ ≤ (√q + 1)2g (so ∣Cl0(F )∣ ≈ qg for q large).

The class group and genus are important invariants of any function field!

Unfortunately, they are not easy to compute . . . /
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Riemann-Roch Theorem

Theorem (Riemann-Roch)

There exist a divisor class W ∈ Cl(D) such that for all D ∈ Div(F ) and all
W ∈W, we have `(W −D) = g − 1 + `(D) − deg(D).

Remarks and Definition

W is unique with this property.
W is called the canonical divisor class and its elements are called
canonical divisors.
W can be explicitly described as the class of Weil differentials of F .

Corollary

deg(W ) = 2g − 2 and `(W ) = g for any canonical divisor W .

If deg(D) ≥ 2g − 1, then `(D) = deg(D) − g + 1.
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Function Field Extensions



Recollection: Prime Ideals in Number Fields

Recall that in a number field extension F ′/F /Q:

A prime ideal p of OF need not remain prime when extended to OF ′ .
Rather, it has a prime ideal factorization pOF ′ =Pe1

1 Pe2
2 ⋯Per

r in OF ′ .

Each Pi is said to lie above p, written Pi ∣p.
Finitely many prime ideals of OF ′ lie above any prime ideal of OF .

p is said to lie below each Pi .
A unique prime ideal of OF lies below every prime ideal of OF ′ .

ei is called the ramification index of Pi ∣p.

The field extension degree fi = [OF ′/P ∶ OF /p] is called the residue
degree of Pi ∣p.

The norm of Pi is the OF -ideal NF ′/F (Pi) = pfi .
The norm extends multiplicatively to all ideals of OF ′ .

The fundamental identity
r

∑
i=1

ei fi = [F ′ ∶ F ] holds.

Once again, we consider analogous notions in function field extensions,
with prime ideals replaced by places, and products replaced by sums.
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Function Field Extensions

Notation and Assumption

F /K and F ′/K ′ are geometric function fields with F ⊆ F ′ and K ⊆ K ′.

F ′ is a finite algebraic extension of F .

K is perfect, i.e. every irreducible polynomial in K [x] has distinct
roots.

Remark: Finite fields, algebraically closed fields, and characteristic 0 fields
are all perfect. K = Fq(x) is not perfect (consider φ(T ) = T q − x).

Theorem and Definition

Every place P ′ of F ′ contains a unique place P of F , namely
P = P ′ ∩ F . Write P ′∣P.

For every place P of F , P ′∣P for only finitely many places P ′ of F ′.

P ′∣P if and only if OP = OP ′ ∩ F . In this case OP ′ is an OP -module of
rank [F ′ ∶ F ].
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Ramification, Residue Degree, Norm and Co-Norm

Theorem and Definition

Let P ∈ P(F ), P ′ ∈ P(F ′) with respective discrete normalized valuations
vP , vP ′ and residue fields FP = OP/P, F ′P ′ = OP ′/P ′. Assume P ′∣P.

There is a unique positive integer e = e(P ′∣P) such that
vP ′(x) = evP(x) for all x ∈ F , called the ramification index of P ′∣P.

There is a natural embedding FP ↪ F ′P ′ via x + P ↦ x + P ′. The
extension degree f (P ′∣P) = [F ′P ′ ∶ FP] is called the residue degree (or
relative degree) of P ′∣P.

The norm of P ′ is the divisor NF ′/F (P ′) = f (P ′∣P)P of F .

The co-norm of P is the divisor conF ′/F (P) = ∑
P ′∣P

e(P ′∣P)P ′ of F ′.

The norm and co-norm extend additively to homomorphisms on
divisors and respect principal divisors, so they also extend to
homomorphisms on divisor classes.

∑
P ′∣P

e(P ′∣P)f (P ′∣P) = [F ′ ∶ F ] (fundamental identity).
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Example — Quadratic Extensions

Let char(K) ≠ 2, F = K(x , y) where x ∈ F is transcendental over K and
y2 = f (x) with f (x) ∈ K [x] ∖K 2 square-free.

For any place P ′ of F , with P = P ′ ∩K(x):

2vP ′(y) = vP ′(y2) = vP ′(f ) = e(P ′∣P)vP(f ) .

Case P is finite. Write P = Pp(x) with p(x) ∈ K [x] monic and irreducible.

If p(x) ∤ f (x) then vP ′(y) = 0.

If p(x) ∣ f (x), then vP(f ) = 1 (since f is square-free), so e(P ′∣P) = 2.
Then vP ′(y) = 1 and ConF /K(x)(P) = 2P ′.

Case P = P∞. Then vP(f ) = v∞(f ) = −deg(f ).

If deg(f ) is odd, then e(P ′∣P) = 2.
Then vP ′(y) = −deg(f ) and ConF /K(x)(P) = 2P ′.

If deg(f ) is even, then we will later see that e(P ′∣P) = 1.
Then vP ′(y) = −deg(f )/2.
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Extension Terminology

Definition

Let P ∈ P(F ).

If P ′ ∈ P(F ′) with P ′∣P, then P ′ lies above P and P lies below P ′.

P is unramified if e(P ′∣P) = 1 for all P ′∣P and ramified otherwise.

P is wildly ramified if char(K) divides e(P ′∣P) for some P ′P, and
tamely ramified otherwise.

P is totally ramified if ConF ′/F (P) = [F ∶ F ′]P ′.

P is inert in F ′ if ConF ′/F (P) = P ′ with f (P ′∣P) = [F ∶ F ′].
P splits completely in F ′ if e(P ′∣P) = f (P ′∣P) = 1 for all P ′∣P.

Sufficient (but not necessary) conditions for a function field to be tamely
ramified are:

char(K) = 0.

[F ′ ∶ F ] < char(K) when char(K) is positive.)
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Properties

Properties relating “Upstairs” to “Downstairs”:

deg(P ′) = f (P ′∣P)
[K ′ ∶ K ] deg(P) for all P ∈ P(F ), P ′ ∈ P(F ′) with P ′∣P.

deg(ConF ′/F (D)) = [F ′ ∶ F ]
[K ′ ∶ K ] deg(D) for all D ∈ Div(F ).

NF ′/F (ConF ′/F (D)) = [F ′ ∶ F ]D for all D ∈ Div(F ).

Transitivity Theorem

Consider F /K , F ′/K ′ and F ′′/K ′′ with F ⊆ F ′ ⊆ F ′′ and K ⊆ K ′ ⊆ K ′′.

Let P ∈ P(F ), P ′ ∈ P(F ′), P ′′ ∈ P(F ′′) with P ′′∣P ′∣P. Then
e(P ′′∣P) = e(P ′′∣P ′)e(P ′∣P) and f (P ′′∣P) = f (P ′′∣P ′)f (P ′∣P).

NF ′′/F (D ′′) = NF ′/F (NF ′′/F ′(D ′′)) for all D ′′ ∈ Div(F ′′).

ConF ′′/F (D) = ConF ′′/F ′(ConF ′/F (D)) for all D ∈ Div(F ).
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Recollection: Prime Splitting in Number Fields

In number fields, prime decomposition can almost always be obtained from

Kummer’s Theorem (Number Fields)

Let F /Q be a number field and p a prime. Let F = Q(α) such that α ∈ OF

and p does not divide the index [OF ∶ Z[α]]. Let φα(T ) ∈ Z[T ] be the
minimal polynomial of α and consider φα(T ) ∈ Fp[T ], the reduction of
φα(T ) modulo p. Let

φα(T ) ≡ φ1(T )e1 φ2(T )e2 ⋯ φr(T )er (mod p)

be the factorization of φα(T ) over Fp into distinct irreducible polynomials.
Then the prime ideal factorization of p in OF is

pOF = pe1
1 pe2

2 ⋯perr ,

where pi = pOF + φi(α)OF , and pi has residue degree fi = deg(φi), for
1 ≤ i ≤ r .
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Kummer’s Theorem for Function Fields

Kummer’s Theorem (Function Fields)

Let F ′/F be a finite algebraic extension of function fields of degree
n = [F ′ ∶ F ] and P ∈ P(F ). Let F ′ = F (y) such that y is integral over OP .
Let φy(T ) ∈ OP[T ] be the minimal polynomial of y over F , and consider
φy(T ) ∈ FP[T ], the image of φy(T ) modulo P under the residue map
OP → FP . Let

φy(T ) ≡ φ1(T )ε1 φ2(T )ε2 ⋯ φr(T )εr (mod P)

be the factorization of φy(T ) over FP into distinct irreducible polynomials.
Then there are at least r distinct places P ′

1, P
′

2, . . . , P
′

r ∈ P(F ′) lying
above P. Furthermore, φi(y) ∈ P ′

i and f (P ′

i ∣P) ≥ deg(φi) for 1 ≤ i ≤ r .

If in addition, {1, y , . . . , yn−1} is an OP -basis of the integral closure
OP = ⋂r

i=1 OP ′i in F ′ or εi = 1 for 1 ≤ i ≤ r , then

ConF ′/F (P) = ε1P
′

1 + ε2P
′

2 +⋯ + εrP ′

r ,

so e(P ′

i ∣P) = εi and f (P ′

i ∣P) = deg(φi) for 1 ≤ i ≤ r .
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Example — Quadratic Extensions

Let char(K) ≠ 2, F = K(x , y) where x ∈ F is transcendental over K and
y2 = f (x) with f (x) ∈ K [x] ∖K 2 square-free.

A finite place P = Pp(x) of K(x)
ramifies in F if p(x) divides f (x);
splits in F if f (x) is a square modulo p(x);
is inert in F if f (x) is a non-square modulo p(x).

The infinite place of K(x)
ramifies in F if deg(f ) is odd;
splits in F if deg(f ) is even and sgn(f ) is a square in K∗;
is inert in F if deg(f ) is even and sgn(f ) is a non-square in K∗.

E.g. if K = F5 and f (x) = x3 + 3x + 2 = (x + 1)(x + 2) ∈ F5[x], then the
ramified places of F5(x) are Px+1, Px+2 and P∞.

The place Px2+2x+4 of F5(x) splits in F because

x2 + 2x + 4 = (2x2 + 2)2 + x(x3 + 3x + 2) ≡ (2x2 + 2)2 (mod f (x)) .
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The Different

Assume that F ′/F is a tamely ramified function field extension.

Definition

The different (or ramification divisor) of F ′/F is

Diff(F ′/F ) = ∑
P∈P(F)

∑
P ′∣P

(e(P ′∣P) − 1)P ′ ∈ Div(F ′).

Example

F = K(x , y) with y2 = f (x) = p1(x)⋯pr(x) (prime factorization of f (x)).

Diff(F /K(x)) = P ′

p1(x)
+⋯ + P ′

pr (x)
+ δP ′

∞
where

P ′

pi(x)
is the unique place lying above Ppi(x);

P ′

∞
is the unique place lying above P∞ when P∞ is ramified;

δ ∈ {0,1} is the parity of deg(f ).

It follows that deg(Diff(F /K(x))) = deg(f ) + δ (an even integer).
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Genus and Ramification

Theorem (Hurwitz Genus Formula)

Let F ′/K ′ be a finite algebraic function field extension of F /K , and denote
by gF ′ and gF the genera of F ′ and F , respectively. Then

2gF ′ − 2 = [F ′ ∶ F ]
[K ′ ∶ K ](2gF − 2) + deg(Diff(F ′/F )).

Corollary

The different has even degree.

If x ∈ F ∖K , then gF = 1
2 deg(Diff(F /K(x)) − [F ∶ K(x)] + 1.

Example (elliptic and hyperelliptic function fields):
F = K(x , y) with char(K) ≠ 2; y2 = f (x) with f (x) ∈ K [x] square-free.

g = ⌊(deg(f ) − 1)/2⌋ (so deg(f ) = 2g + 1 or 2g + 2).

deg(Diff(F /K(x)) = 2g + 2.
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Constant Field Extensions

Recall our assumptions that K is perfect and K ′/K is algebraic.

Definition

An extension F ′/K ′ of F /K is a constant field extension if F ′ = FK ′.

Theorem

Let F /K be a constant field extension of F /K . Then the following hold:

K ′ is the full constant field of F ′.

[F ∶ K(x)] = [F ′ ∶ K ′(x)] for all x ∈ F ∖K .

F ′/F is unramified, i.e. no place of F ramifies in F ′.

gF ′ = gF .

The conorm map ConF /F ′ ∶ Cl(F )↪ Cl(F ′) is injective.

Corollary

If F /K has finite class group, then hF divides hF ′ .
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Genus 0 and 1 Function Fields



Genus 0 Function Fields

We continue to assume that K is perfect.

Theorem

Let F /K be a function field of genus 0. Then the following hold:

F /K is rational if and only if it has a rational (i.e. degree 1) place.
If F /K is not rational, then F has a place of degree 2, and there
exists x ∈ F with [F ∶ K(x)] = 2.

Corollary

For K algebraically closed, F /K is rational if and only if F has genus 0.

Example

F = R(x , y) where x2 + y2 = −1 has genus 0 but is not rational.

Remark

Every genus 0 function field has class number 1.
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Genus 1 Function Fields

Definition

A function field F /K is elliptic if it has genus 1 and a rational place.

Corollary

For K algebraically closed, F /K is elliptic if and only if F has genus 1.

Example

F = R(x , y) where x2 + y4 = −1 has genus 1 but is not elliptic.

Theorem

If F /K is elliptic, then there exist x , y ∈ F such that F = K(x , y) and

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

for some a1, a2, a3, a4, a6 ∈ K . This equation defines an elliptic curve in
Weierstrass form.

Remark

[F ∶ K(x)] = 2 and [F ∶ K(y)] = 3.
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Short Weierstrass Form

Consider y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

If char(K) ≠ 2, then “completing the square for y”, i.e. substituting y
by y − (a1x + a3)/2 leaves F /K unchanged and produces an equation
of the form

y2 = x3 + b2x
2 + b4x + b6 (b2,b4,b6 ∈ K).

If in addition char(K) ≠ 3, then “completing the cube for x”, i.e.
substituting x by x − b2/3 leaves F /K unchanged and produces an
equation of the form

y2 = x3 +Ax +B (A,B ∈ K).

This is an elliptic curve in short Weierstrass form.

Similarly, if char(K) = 2, one can always convert a (long) Weierstrass
form to an equation of the form

y2 + y = cubic polynomial in x or y2 + xy = cubic polynomial in x .
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Interlude – Why “Genus”?
Brief excursion into the topology and geometry of function fields. ,

In topology, the genus g of a connected, orientable surface is the number
of “handles” on it (or ”holes” in it). It is the maximum number of (closed
non-intersecting) cuts that are possible without disconnecting the surface.

For example:

A sphere has genus 0
A “doughnut” (torus) has genus 1, as does a coffee mug with a handle
A ”pretzel” (3-dimensional figure 8) has genus 2

Geometrically, over an algebraically closed field K , places of a function
field F /K correspond one-to-one to the points on the unique non-singular
plane curve defining F /K .

A rational (i.e. genus 0) function field over C corresponds to the
projective line P1(C), which is a sphere and thus a genus 0 object.

An elliptic (i.e. genus 1) curve over C corresponds to the plane C2

modulo its period lattice which is a torus and thus a genus 1 object.
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P1(F ) as an Abelian Group

Theorem

Let F /K be an elliptic function field, and fix a rational place P∞ ∈ P1(F ).
Then the injection Φ ∶ P1(F )→ Cl0(F ) via P ↦ [P − P∞] is a bijection.

Corollary

Every degree zero divisor class of F /K has a unique representative of
the form [P − P∞] with P ∈ P1(F ).

The set P1(F ) becomes an abelian group (and Φ a group
isomorphism) under the addition law

P ⊕Q =∶ R ⇐⇒ [P − P∞] + [Q − P∞] = [R − P∞].
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Points on an Elliptic Curve

Consider E ∶ y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Definition

The set of (K -)rational points on E is

E(K) = { (x0, y0) ∈ K ×K ∣
y2

0 + a1x0y0 + a3y0 = x3
0 + a2x

2
0 + a4x0 + a6} ∪ {∞} .

The “point” ∞ arises from the homogenization of E :

EH ∶ y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

Points on EH : [x ∶ y ∶ z] ≠ [0 ∶ 0 ∶ 0] normalized to last non-zero entry = 1.

Points on E ←→ Points on EH

(x , y) Ð→ [x ∶ y ∶ 1]
(x/z , y/z) ←Ð [x ∶ y ∶ z] when z ≠ 0
∞ ←Ð [0 ∶ 1 ∶ 0]
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Point Arithmetic

Theorem (Bezout)

Two curves of respective degrees m and n intersect in exactly mn points
(counting point multiplicities).

Corollary

A line intersects an elliptic curve in exactly 3 points.

Group Law on E(K) (additive, abelian):

Identity: ∞.

Inverses: −p is defined as the third point of intersection of the
“vertical”line through p and ∞ with E .
Addition:

▸ If p ≠ q, then −r is defined as the third point of intersection of
the secant line through p and q with r .

▸ If p = q, then −r is defined as the third point of intersection of
the tangent line at p to E .

▸ Must then invert −r to obtain r .
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An Elliptic Curve and a Point

E ∶ y2 = x3 − 5x over Q, p = (-1, -2) ∈ E(Q)
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Inversion on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2)
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The vertical line through p and ∞ is x = −1

Renate Scheidler (Calgary) Number Theory in Function Fields UNGC, Summer 2016 63 / 92



Inversion on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2)
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It intersects E in the third point −p = (−1,2)
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Addition of Distinct Points on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2), q = (0,0)

-10

-5

 0

 5

 10

-3 -2 -1  0  1  2  3  4  5  6

The line through p and q is y = 2x
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Addition of Distinct Points on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2), q = (0,0)
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It intersects E in the third point −r = (5,10)
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Addition of Distinct Points on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2), q = (0,0)
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The sum r = p + q is the inverse of −r , i.e. r = (5,−10)
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Doubling on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2)
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The line tangent to E at p is y = 19
26x −

33
26
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Doubling on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2)
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It intersects E in the third point −r = (9
4 ,

3
8
)
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Doubling on E

E ∶ y2 = x3 − 5x over Q, p = (−1,−2)
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The sum r = p + p is the inverse of −r , i.e. r = (9
4 ,−

3
8
)
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Rational Points and Rational Places

Recall the addition law on P1(F ):

P ⊕Q = R ⇔ [P − P∞] + [Q − P∞] = [R − P∞]
⇔ [P] + [Q] − [R] = [P∞]

Recall the addition law on E(K): p + q − r =∞.

Theorem

Let (x0, y0) ∈ E(K) ∖ {∞}. Then exists a unique P(x0,y0)
∈ P1(F )

such that supp(div(x − x0)) ∩ supp(div(y − y0)) = {P(x0,y0)
,P∞}.

The map Ψ ∶ E(K)→ P1(K) via (x0, y0)↦ P(x0,y0)
and ∞↦ P∞ is a

group isomorphism.

So we have group isomorphisms

(E(K), point addition)
Ψ←→ (P1(F ),⊕) Φ←→ (Cl0(F ), divisor addition)
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Hyperelliptic Function Fields



Hyperelliptic Function Fields

Definition

A function field F /K is hyperelliptic if it has genus at least 2 and there
exists x ∈ F such that [F ∶ K(x)] = 2.

Properties:

F /K is hyperelliptic if and only if there exists D ∈ Div(F ) with
deg(D) = 2 and `(D) ≥ 2.
Every genus 2 function field is hyperelliptic.

Description: Write F = K(x , y) with [F ∶ K(x)] = 2.
Then F /K(x) has a minimal polynomial of the form

y2 + h(x)y = f (x)

where h(x) and f (x) are polynomials (after we make everything integral)
and h(x) = 0 if K has characteristic ≠ 2.
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Hyperelliptic Curves

A hyperelliptic function field of genus g is of the form F = K(x , y) where

C ∶ y2 + h(x)y = f (x)

with the following properties:

f (x),h(x) ∈ K [x];
C is irreducible over K(x);

C is non-singular (or smooth), i.e. there are no simultaneous solutions
to C and its partial derivatives with respect to x and y .

deg(f ) = 2g + 1 or 2g + 2;

If K has characteristic ≠ 2, then h(x) = 0 ;

If K has characteristic 2, then deg(h) ≤ g when deg(f ) = 2g + 1, and
h(x) is monic of degree g + 1 when deg(f ) = 2g + 2;

C is a hyperelliptic curve of genus g over K .

Remark: The case g = 1 and deg(f ) odd also covers elliptic curves.
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Examples

Every hyperelliptic curve over a field K of characteristic ≠ 2 has the
form y2 = f (x) with f (x) ∈ K [x] square-free.

y2 = x5 − 5x3 + 4x − 1 over Q, genus g = 2
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Classification by to Splitting at Infinity

Case 1: deg(f ) = 2g + 1 (odd). Then P∞ ramifies in F .

Case 2: deg(f ) = 2g + 2 (even) and

sgn(f ) is a square in K∗ when q is odd;
sgn(f ) is of the form s2 + s for some s ∈ K when q is even.

Then P∞ splits in F .

Case 3: deg(f ) = 2g + 2 (even) and

sgn(f ) is a non-square in K∗ when q is odd;
sgn(f ) is not of the form s2 + s with s ∈ K when q is even.

Then P∞ is inert in F .

The representation of F /K(x) by C is referred to as ramified, split, and
inert according to these three cases, or alternatively as imaginary, real, and
unusual.
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Model Properties

Ramified representations are the function field analogue of imaginary
quadratic number fields. Split representations are the function field
analogue of real quadratic number fields. Inert representations have
no number field analogue.

The variable transformation x ↦ 1/(x − a) and y ↦ y/(x − a)g+1, with
f (a) ≠ 0, converts a ramified representation of F /K(x) into a split or
inert representation of F /K(x) without changing the underlying
rational function field K(x).

The same variable transformation, with f (a) = 0, converts an inert or
split representation of F /K(x) into a ramified representation of
F (a)/K(a)(x); note that this may require an extension of the
constant field.

Inert models F /K(x) become split when considered over a quadratic
extension over K . They don’t exist over algebraically closed fields.
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Degree Zero Divisors

Let D ∈ Div0(F ).

Ramified model: ConF /K(x)(P∞) = 2∞ with deg(∞) = 1.

D = D0 − deg(D0)∞ with ∞ ∉ supp(D0) .

This gives rise to a group isomorphism from Div0(F ) onto the group of
finite divisors {D ∈ Div(F ) ∣∞ ∉ supp(D)}.

Split model: ConF /K(x)(P∞) =∞+ +∞− with deg(∞+) = deg(∞−) = 1.

D = D0 − deg(D0)∞− − n(∞+ −∞−) with ∞+,∞− ∉ supp(D0) and n ∈ Z .

This gives rise to a surjective group homomorphism from Div0(F ) onto
the group of finite divisors {D ∈ Div(F ) ∣∞+,∞− ∉ supp(D)} with kernel
⟨∞+ −∞−⟩.

Henceforth concentrate on finite divisors.
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Semi-Reduced and Reduced Divisors

Definition

A finite divisor D of F is semi-reduced if it is

effective, i.e. vP(D) ≥ 0 for all P ∈ P(F ), and

co-norm-free, i.e. can’t be written as D = E +A where A is the
con-norm of some divisor of K(x).

D is reduced if it is semi-reduced and deg(D) ≤ g .

Proposition

A finite divisor is semi-reduced if and only if D is effective and for all finite
P ∈ P(F ), the following hold:

If P ∩K is inert in F , then vP(D) = 0.

If P ∩K is ramified in F , then vP(D) ∈ {0,1}.

If P ∩K splits in F , say as P +Q, then either vP(D) = 0 or vQ(D) = 0.
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More on Semi-Reduced Divisors

Lemma

Every class in Cl0(F ) contains a divisor whose finite part is semi-reduced.

Theorem

Every class in Cl0(F ) contains a divisor D whose finite part D0 is
reduced.

If F /K(x) is ramified, then D is unique.

If F /K(x) is split, then there is a unique such divisor D with
0 ≤ n ≤ g − deg(D0). All but at most g classes have n = 0, i.e.
D = D0 − deg(D0)∞+.

Remark

If [F ∶ K(x)] is split, then the divisors D = D0 − deg(D0)∞+ form the
infrastructure of F /K(x) (more on that later).
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Mumford Representation of Places

Write F = K(x , y)] with y2 + h(x)y = f (x).

Lemma

Let P be a finite place of F , and write P ∩K(x) = Pp(x) with
p(x) ∈ K [x] monic and irreducible. Suppose Pp(x) ramifies or splits in
F . Then there exists a polynomial v(x) ∈ K [x], unique modulo p(x),
with v(x)2 + h(x)v(x) ≡ f (x) (mod p(x)) and vP(v + y) > 0. .

Conversely, let p(x), v(x) ∈ K [x] with p(x) be monic and irreducible,
and v(x)2 + h(x)v(x) ≡ f (x) (mod p(x)). Then Pp(x) ramifies or
splits in F and there exists a unique finite place P of F lying above
Pp(x) with vP(v + y) > 0.

Corollary

The polynomials (p(x), v(x) mod p(x)) as above are in one-to-one
correspondence with the finite places P of F such that P ∩K(x) ramifies
or splits in F .
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Mumford Representation of of Divisors

Theorem

Let D be a semi-reduced divisor of F .Then there exist u(x), v(x)
∈ K [x], with u(x) unique and v(x) unique modulo u(x), such that

▸ u(x) is monic;
▸ v(x)2 + h(x)v(x) ≡ f (x) (mod u(x));
▸ vP(u) > 0 and vP(y + v) > 0 for all P ∈ supp(D).

Conversely, let u(x), v(x) ∈ K [x] with u(x) monic and
v(x)2 + h(x)v(x) ≡ f (x) (mod u(x)). Then the divisor D = ∑nPP
where nP = min{vP(u), vP(y + v)} for all finite places P of F is
semi-reduced.

Corollary and Definition

The polynomials (u(x), v(x) mod u(x)) as above are in one-to-one
correspondence with the semi-reduced divisors D of F . They are the
Mumford representation of D, and we write D = (u, v).
Note also that deg(D) = deg(u).
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Examples of Mumford Representations

The Mumford representation of the trivial divisor is (1,0).

Suppose K has characteristic ≠ 2 and F = K(x , y) with y2 = f (x)
square-free. Let P ∈ P(F ) be ramified, and write P ∩K(x) = Pp(x).
Then f (x) ≡ 0 (mod p(x)), and P has Mumford representation
(p(x),0).

Every finite point (x0, y0) on a hyperelliptic curve corresponds to a
rational place P of the function field of C with Mumford
representation (x − x0, y0).
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Semi-reduced Divisors and K [x , y]-ideals

Theorem

Let u(x), v(x) ∈ K [x]. Then the following are equivalent:

(u, v) is the Mumford representation of a reduced divisor of F .

The K [x]-submodule of K [x , y] of rank 2 generated by u(x) and
v(x) + y is an ideal of K [x , y].
v(x)2 + h(x)v(x) ≡ f (x) (mod u(x)).

Remark

If F /K(x) is ramified, then the bijection between semi-reduced divisors
and K [x , y]-ideals of the form above extends to a group isomorphism from
Cl0(F ) onto the ideal class group of K [x , y].
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Arithmetic in Cl0(F ) for Ramified Models

Goal: efficient arithmetic on Cl0(F ) via unique reduced divisor class
representatives in Mumford representations when F /K(x) is ramified:

[D1] + [D2] = [D1 ⊕D2] where

D1 and D2 are the unique reduced divisors in their respective classes;

D1 ⊕D2 is the unique reduced divsor in the class of D1 +D2;

All three divisors are given in Mumford representation.

Road map: Cantor’s Algorithm

1 First compute a semi-reduced divisor D equivalent to D1 +D2 in
Mumford representation.

2 Then reduce D, i.e. compute the Mumford representation of the
unique reduced divisor D1 ⊕D2 equivalent to D.

Renate Scheidler (Calgary) Number Theory in Function Fields UNGC, Summer 2016 85 / 92



Divisor Addition, Simplest Case

Consider a ramified hyperelliptic function field F = K(x , y) where
y2 + h(x)y = f (x).

Let D1 = (u1, v1) and D2 = (u2, v2).

Proposition

D1 +D2 is semi-reduced if and only if gcd(u1,u2, v1 + v2 + h) = 1.

In this case, D1 +D2 = (u, v) where

u = u1u2 , v ≡
⎧⎪⎪⎨⎪⎪⎩

v1 (mod u1) ,
v2 (mod u2) .
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Divisor Addition, General Case

Theorem

Let D1 = (u1, v1) and D2 = (u2, v2) be semi-reduced divisors. Then
D1 +D2 = D + div(s) where D = (u, v) is a semi-reduced divisor, and
s,u, v ∈ K [x] are computed as follows:

1 Let s = gcd(u1,u2, v1 + v2 + h) = au1 + bu2 + c(v1 + v2 + h) where
a,b, c ∈ K [x] are computed using the extended euclidean algorithm.

2 Set u = u1u2

s2
.

3 Set v ≡ au1v2 + bu2v1 + c(v1v2 + f )
s

(mod u) .

Note that even when D1 and D2 are reduced, D is generally not reduced!
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Divisor Reduction

Let D = (u, v) be a semi-reduced divisor with deg(u) > g . Set

u′ = f + hv − v2

u
, v ′ ≡ h − v (mod u′) .

Properties:

The divisor D ′ = (u′, v ′) is equivalent to D.

If deg(u) ≥ g + 2, then deg(u′) ≤ deg(u) − 2.

If deg(u) = g + 1, then deg(u′) ≤ g .

Remarks

If we repeatedly compute (u′, v ′) and substitute these values for u
and v , we will obtain the reduced divisor D ′ = (u′, v ′) equivalent to D.

The number of these reduction steps required to obtain D ′ is
⌈(deg(u) − g)/2⌉.
If D was obtained by addition of two reduced divisors, then
deg(u) ≤ 2g , and hence the number of reduction steps is ⌈g/2⌉.
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Inert Models

One infinite degree 2 place ∞.

Properties:

If F /K(x) is inert and L is a quadratic extension of K , then FL/L(x)
is split.

Only the finite divisors of even degree correspond to degree zero
divisors D0 − (deg(D0)/2)∞.

If K = Fq, then very degree zero divisor class contains either a unique
reduced representative or q + 1 almost reduced divisors (semi-reduced
and deg(D0) = g + 1, Artin 1924).

Reduction finds the reduced or an almost reduced representative.
For the latter case, Artin provided a procedure for finding the other q
almost reduced equivalent divisors.
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Split Models

Two infinite places ∞+,∞−, both of degree 1.

Theorem (Paulus & Rück 1999)

Every degree zero divisor class has a unique representative of the form
D0 − deg(D0)∞− + n(∞+ −∞−), where D is reduced and
0 ≤ n ≤ g − deg(D0).

Divisor class addition: Cantor plus adjustment steps (usually ⌈g/2⌉ of
them) to get n to the correct range.
Infrastructure: Divisors with n = 0 (“almost” a group)

Theorem (Galbraith, Harrison & Mireles Morales 2008)

Every degree zero divisor class has a unique balanced representative
D0 + deg(D0)∞− + n(∞+ −∞), where D is reduced and
−⌈g/2⌉ ≤ n ≤ ⌊g/2⌋ − deg(D0).

Divisor class addition: Cantor with occasionally some balancing steps.
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Why Consider Split Representations?

Advantages:

A ramified representation need not always exist.

Construction methods (e.g. for cryptography) don’t always produce
ramified models.

Ramified F /K(x) models can be converted to split models F /K(x),
but the reverse direction is only possible over a base field that
contains a rational point.

Mathematically interesting.

Less researched than ramified models.

Disadvantages:

Mathematically more complicated than ramified models.

Arithmetic is slightly slower.

Less researched than ramified models.
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The End

http://voltage.typepad.com/superconductor/2011/09/a-projective-imaginary-hyperelliptic-curve.html
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