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Motivation: Other Models

Elliptic Curves in Weierstrass Model

E : y2 = x3 − 5x over Q
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Motivation: Other Models

Some Other Elliptic Curve Models

Other elliptic curve models with faster arithmetic:

Hessians: x3 + y3 − 3dxy = 1

Edwards models: x2 + y2 = c2(1 + dx2y2) (q odd) and variations
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x3 + y3 = 1
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x2 + y2 = 10(1− x2y2)

Mike Jacobson (University of Calgary) Alternative Models: Infrastructure June 2, 2016 3 / 21



Motivation: Other Models

Split Representations of Hyperelliptic Function Fields

Two infinite places ∞+ and ∞−, both of degree 1.

Divisor class epresentation:
r∑

i=1

Pi − r∞− + n(∞+ −∞−), r ≤ g

No restrictions on n: many reduced divisors in each class (≈ qg )

n = 0: infrastructures (misses a few divisor classes)

n ≈ g : unique representatives, multiply/reduce plus adjustment steps
(Paulus/Rück 1999)

n ≈ dg/2e: balanced representation, unique and generally no
adjustment steps (Galbraith/Harrison/Mireles Morales 2008)

Computations (discrete logarithms, invariants) are polynomially equivalent.
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Motivation: Other Models

Example: Odd Degree (Ramified) Hyperelliptic Curve

H : y2 = x5 − 5x3 + 4x − 1 over Q, genus g = 2
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Motivation: Other Models

Example: Even Degree (Split) Models

y2 + h(x)y = f (x), deg(f ) = 2g + 2, deg(h) = g + 1 if char(K ) = 2.
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y2 = x4 − 6x2 + x + 6

(g = 1)
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y2 = x6 − 13x4 + 44x2 − 4x − 1

(g = 2)
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Motivation: Other Models

Why Consider Split Representations?

Main advantage: more general than ramified representations

split representation always exists, whereas a ramified or inert one may
only exist over a larger base field

Can always transform a ramified to split model over K , but the
reverse direction may require an extension of K .

Some constructions (eg. pairing-friendly curves in cryptography)
frequently generate split models which are traditionally just discarded.

Disadvantages:

Split representations are more complicated than ramified ones.

Research into efficient arithmetic on real models is far less advanced
(i.e. slower, but catching up!)
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Infrastructure

Almost-Reduction

Let a = [u, v + y ] be a primitive non-reduced ideal. Set

v ′ ≡ −v mod u , u′ =
f − (v ′)2

u
.

Properties:

a′ = [u′, v ′ + y ] is a primitive ideal.

a′ = (z)a with z = (v ′ + y)/u ∈ F ∗, so a′ is equivalent to a.

deg(u′) ≤ deg(u)− 2.

b(deg(u)− g)/2c applications of the operation a→ a′ produces a
reduced or almost reduced ideal equivalent to a.

In particular, if a was obtained as the primitive product of two
reduced ideals, then this number is bg/2c .
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Infrastructure

Reduction

Suppose K = Fq is a finite field and a = [u, v + y ] is almost reduced.

If P∞ is ramified in F , then one more iteration a→ a′ produces the
unique reduced ideal equivalent to a.

If P∞ is inert in F , then Artin provided a simple iterative procedure
for finding the other q almost reduced ideals equivalent to a.

If P∞ splits in F , then “perturbing” the reduction operation on v from

v ′ =
⌊v
u

⌋
u − v

to

v ′ =

⌊
v + byc

u

⌋
u − v

yields the entire infrastructure of a. (Note that y ∈ Fq((x−1)).)
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Infrastructure

Infrastructures as Ordered Sets

Suppose P∞ splits in F and let a1 be a fixed reduced Fq[x , y ]-ideal.

The perturbed reduction operation repeatedly applied to a1 cyclically
generates the entire infrastructure {a1, a2, . . . , . . . ap}:

ai = [ui , vi + y ] and ai+1 = (zi )ai with zi =
vi+1 + y

ui
.

Fix a place P ′∞ of F lying above P∞ and define the relative distances

δ(ai+1, ai ) = −vP′
∞(zi ) = g + 1− deg(ai ) ≥ 1 .

δi+1 = δ(ai+1, a1) =
i∑

j=1

δ(aj+1, aj) = i(g + 1)−
i∑

j=1

deg(ai ) .

This imposes an order on the infrastructure according to distance from a1.
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Infrastructure

Properties of Infrastructures

∅ = δp+1 = RS

δp δ1 δ2

δi
δi+1

δ3

Properties:

δ(ai+1, ai ) ≥ 1;

δ(ai+1, ai ) ≤ g unless ai = K [x , y ], in which case δ(ai+1, ai ) = g + 1;

δp+1 = RF , the regulator of OF (degree of fundamental unit);

deg(ai ) = g almost always and hence δ(ai+1, a1) ≈ i .
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Infrastructure

Infrastructures as Structured Sets

Let a, b be reduced ideals with b principal, and let a ∗ b denote the first
reduced ideal obtained by applying reduction to the primitive part of ab.

Note that a ∗ b is equivalent to a.

Theorem

0 ≤ δ(a ∗ b, a)− δ(b,OF ) ≤ 2g .

For any reduced principal ideal r, write δ(r) = δ(r,OF ) for brevity.

Special case: a is also principal. Then δ(a ∗ b, a) = δ(a ∗ b)− δ(a), so:

Corollary (a, b principal)

δ(a ∗ b) = δ(a) + δ(b)− d with 0 ≤ d ≤ 2g .
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Infrastructure

Principal Infrastructure

OS

a

b

a * b

Distances are “almost” additive on the principal infrastructure.

So the principal infrastructure is “almost” an abelian group under “∗”:

identity is OF ;

inverse of [u, v + y ] is [u,−v + y ];

associativity “almost” holds.
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Infrastructure

Principal Infrastructure as a Near-Group

Definition

Let a be a reduced ideal and
n ∈ [0,RS). Then the ideal closest to
n with respect to a is the unique
reduced ideal b ∈ [a] with
|δ(b, a)− n| minimal.

a

b
n

For a pair a, b of reduced principal ideals, define the ideal a⊗ b to be the
reduced principal ideal closest to δ(a) + δ(b) with respect to OF .

a⊗ b can computed efficiently by a ∗ b (multiplication and reduction)
followed by at most 2g perturbed reduction steps.

Principal infrastructure is almost an abelian group under the operation ⊗
(small number of elements that for which associativity still fails).
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Infrastructure

Analogy: Cyclic Group

Cyclic group G (order n, generated by g)

g i is at distance i from 1

baby step (multiplication by g) advances distance by exactly 1

given g i and g j , g ig j = g i+j (distances are exactly additive)

for u, v ∈ Z, we have gu = g v iff u ≡ v (mod n)

Principal infrastructure (“order” RF )

δ(ai ) is the distance from OF

perturbed reduction step advances distance by 1 in “most” cases

given ai and aj , ai ⊗ aj yields ak with δ(ak) ≈ δ(ai ) + δ(aj) (not a
group)

we have (α) = (β) iff deg(α) ≡ deg(β) (mod RF )
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Infrastructure

Applications

Invariant computation:

ideal class number

regulator and fundamental unit

Public-key cryptography:

behaves sufficiently like a group that most protocols work as in a
cyclic group — problems only with probability 1/q (assuming K = Fq)

security related to principal ideal problem — given a, compute δ(a)

various techniques have been developed to avoid problems

improvements to eliminate almost all of the reduction steps
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Infrastructure

Comparison to Jacobian

Mirales Morales (2007): map between class of ∞+ −∞− and
infrastructure

balanced representations of divisor classes (with n = 0) map to
infrastructure elements

classes with balanced reps with n 6= 0 correspond to problems with
the ⊗ operation (“holes”)

Consequences:

principal infrastructure and class of ∞+ −∞− are computationally
equivalent — can compute invariants or do cryptography in either
structure

Rezai Rad (2016): with the right definition of distance, computations
in both are identical
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Infrastructure

Efficient Ideal Arithmetic in Split Models

Arbitrary Genus

Regular multiplication, Harley optimizations work

J./van der Poorten (2003), J./Scheidler/Stein (2007): NUCOMP
works, too.

Explicit formulas:

Erickson/J./Stein (2011): genus 2 (slightly slower than ramified
models)

Rezai Rad/J./Scheidler: genus 3 (work in progress)

Explicit formulas using the geometric method have not been developed for
split models of any genus.
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Other Models, Other Function Fields, and Beyond

Other Models of Elliptic and Hyperelliptic Curves

Most efficient elliptic curve arithmetic (odd characteristic):

Edwards models x2 + y2 = 1 + dx2y2 with d ∈ K \ {0, 1}.

Most effient genus 2 hyperelliptic curves arithmetic:

Gaudry (2007): theta functions on Kummer surfaces (not for all
curves)

No Edwards analogues known for g ≥ 2
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Other Models, Other Function Fields, and Beyond

Non-Hyperelliptic Function Fields

Smooth plane quartics (genus 3, non-hyperelliptic)

Cubic Extensions of Fq(x)

Picard curves: y3 = f (x) ∈ Fq[x ] square-free with deg(f ) = 4

general radical extension K = Fq(x , y) with y3 = f (x) with
f (x) ∈ Fq[x ] cube-free and characteristic 6= 3

Bauer/Webster (2013): certain cubics in characteristic 3

Superelliptic curves: yn = f (x), ramified (Galbraith/Paulus/Smart 2000)

Arbitrary extensions of unit rank 2 (Tang 2011)

Some general arithmetic for arbitrary function fields by Hess and others

Divisor addition is easy (ideal multiplication)

Reduction is generally hard
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Other Models, Other Function Fields, and Beyond

Applications of Geometric Method

Ca,b curves:

ya + cb,0x
b +

∑
ia+jb<ab

cijx
iy j = 0 (cij ∈ K )

Explicit formulas, using geometric method / linear algebra for C3,4

(Salem/Khuri-Makdisi 2006) and C3,5 (Oyono/Thériault 2013)

Jacobian of an arbitrary curve: (Khuri-Makdisi 2004)

Generalization to abelian varieties: (Murty/Sastry ongoing)
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