Improving Ideal Arithmetic

Michael J. Jacobson, Jr.
jacobs@cpsc.ucalgary.ca

UNIVERSITY OF
CALGARY

UNCG Summer School in Computational Number Theory 2016:
 Function Fields

Applications of Ideal Arithmetic

Arithmetic of ideal of function fields has many applications:

- invariant computation (class group, regulator / fundamental units)
- cryptography
- constructing cubic function fields of a given discriminant

For all, want the arithmetic to be as fast as possible. Minimize:

- number of field multiplications
- number of inversions (about 100 muls each in odd char, 10 in even)

Approaches to Speed Ideal Arithmetic

Optimization for arithmetic can happen at three levels:

- Optimize arithmetic in the field K
- Optimize divisor class arithmetic
- Optimize certain arithmetic operations in the class group (e.g. tripling, scalar multiplication)

Approaches to fast divisor class arithmetic:

- Optimize addition/reduction formulas
- Optimize generic formulas (e.g. NUCOMP)
- Optimize for fixed, small genus (explicit formulas)
- Use different curve/function field descriptions

Divisor Addition

Recall the formulas for divisor addition:

Theorem

Let $D_{1}=\left(u_{1}, v_{1}\right)$ and $D_{2}=\left(u_{2}, v_{2}\right)$ be semi-reduced divisors. Then $D_{1}+D_{2}=D+\operatorname{div}(s)$ where $D=(u, v)$ is a semi-reduced divisor, and $s, u, v \in \mathbb{F}_{q}[x]$ are computed as follows:
(1) Let $s=\operatorname{gcd}\left(u_{1}, u_{2}, v_{1}+v_{2}+h\right)=a u_{1}+b u_{2}+c\left(v_{1}+v_{2}-h\right)$
(2) Set $u=\frac{u_{1} u_{2}}{s^{2}}$.
(3)Set $v=\frac{a u_{1} v_{2}+b u_{2} v_{1}+c\left(v_{1} v_{2}+f\right)}{s}(\bmod u)$

NUCOMP

Problem with add/reduce:

- Mumford representation of reduced ideal/divisor has $\operatorname{deg}(u) \leq g$
- intermediate operands (before reduction) have degree $\leq 2 g$

NUCOMP (Shanks 1988):

- apply partial reduction before multipliction, to reduce operand sizes
- Shanks: composition of positive-definite binary quadratic forms
- J./van der Poorten (2002), J./Scheidler/Stein (2007): generalized to hyperelliptic function fields
- more complicated algorithm, but intermediate operands usually have degree $\leq 3 g / 2$
- J./Scheidler/Stein (2007): faster for $g>6$ (roughly)

NUCOMP: Main Idea

Consider $\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=(u, v)$. Set $w_{2}=\left(f+h v_{2}-v_{2}^{2}\right) / u_{2}$.

- From addition law:

$$
\begin{aligned}
v & \equiv \frac{a u_{1} v_{2}+b u_{2} v_{1}+c\left(v_{1} v_{2}+f\right)}{s}(\bmod u) \\
& =v_{2}+U \frac{u_{2}}{s} \text { with } U \equiv b\left(v_{1}-v_{2}\right)+c w_{2}\left(\bmod u_{1} / s\right)
\end{aligned}
$$

- reduction of $(u, v) \leftrightarrow$ continued fraction expansion of $(v+y) / u$
- rational function $s U / u_{1} \approx(v+y) / u$ (irrational)
- rational continued fraction expansion gives same partial quotients as the irrational one (first few iterations)
- can derive formulas to compute reduction of (u, v) without first computing u and v

NUCOMP: Description $\left(C: y^{2}=f(x)\right)$

1. Compute s, U as before. Set $L=u_{1} / s, N=u_{2} / s$.
2. Set $R_{-2}=U, R_{-1}=u_{1} / s, C_{-2}=-1, C_{-1}=0$. Iterate

$$
q_{i}=\left\lfloor R_{i-2} / R_{i-i}\right\rfloor, \quad R_{i}=R_{i-2}-q_{i} R_{i-1}, \quad C_{i}=C_{i-2}-q_{i} C_{i-1}
$$

until $\operatorname{deg}\left(R_{i}\right) \leq\left(\operatorname{deg}\left(u_{1}\right)-\operatorname{deg}\left(u_{2}\right)+g+(g \bmod 2)\right) / 2<\operatorname{deg}\left(R_{i-1}\right)$
3. Compute:

- $M_{1}=\left(N R_{i}-\left(v_{1}-v_{2}\right) C_{i}\right) / L$
- $M_{2}=\left(R_{i}\left(v_{1}+v_{2}\right)-s w_{2} C_{i}\right) / L$
- $u=(-1)^{i-1}\left(R_{i} M_{1}-C_{1} M_{2}\right)$
- $v=\left(N R_{i}+u C_{i-1}\right) / C_{i}-v_{2}(\bmod u)$

Geometric Method: An Example

$$
H: y^{2}=x^{5}-5 x^{3}+4 x-1 \text { over } \mathbb{Q}, \text { genus } g=2
$$

The Jacobian (geometrically)

Jacobian of $H: \quad \operatorname{Jac}_{H}(\bar{K})=\operatorname{Div}_{H}^{0}(\bar{K}) / \operatorname{Prin}_{H}(\bar{K})$
Motto: "Any complete collection of points on a function sums to zero."

$$
H(\bar{K}) \hookrightarrow \mathrm{Jac}_{H}(\bar{K}) \quad \text { via } P \mapsto[P]
$$

For elliptic curves: $E(\bar{K}) \cong \operatorname{Jac}_{E}(\bar{K}) \quad(\Rightarrow E(\bar{K})$ is a group $)$

Identity: $[\infty]=\infty-\infty$
Inverses: The points

$$
P=\left(x_{0}, y_{0}\right) \text { and } \bar{P}=\left(x_{0},-y_{0}-h\left(x_{0}\right)\right)
$$

on H both lie on the function $x=x_{0}$, so

$$
-[P]=[\bar{P}]
$$

Semi-Reduced and Reduced Divisors

Every class in $\mathrm{Jac}_{H}(\bar{K})$ contains a divisor $\sum_{\text {finite }} m_{P}[P]$ such that

- all $m_{P}>0$ (replace $-[P]$ by $[\bar{P}]$)
- if $P=\bar{P}$, then $m_{P}=1($ as $2[P]=0)$
- if $P \neq \bar{P}$, then only one of P, \bar{P} can appear (as $[P]+[\bar{P}]=0$)

Such a divisor is semi-reduced. If $\sum m_{P} \leq g$, then it is reduced.
E.g. $g=2$: reduced divisors are of the form $[P]$ or $[P]+[Q]$.

Theorem

Every class in $\mathrm{Jac}_{H}(\bar{K})$ contains a unique reduced divisor.
$D_{1} \oplus D_{2}$: the reduced divisor in the class $\left[D_{1}+D_{2}\right]$

An Example of Reduced Divisors

$$
D_{1}=(-2,1)+(0,1), \quad D_{2}=(2,1)+(3,-11)
$$

Inverses on Hyperelliptic Curves

The inverse of $D=P_{1}+P_{2}+\cdots P_{r}$ is $-D=\bar{P}_{1}+\bar{P}_{2}+\cdots \bar{P}_{r}$

Addition on Genus 2 Curves

$$
D_{1}=(-2,1)+(0,1),
$$

$$
D_{2}=(2,1)+(3,-11)
$$

Addition on Genus 2 Curves

Addition on Genus 2 Curves

$$
(\bullet+\bullet)+(\bullet+\bullet)+(\bullet+\bullet)=0
$$

Addition on Genus 2 Curves

$(\bullet+\bullet)+(\bullet+\bullet)+(\bullet+\bullet)=0 \quad \Rightarrow \quad(\bullet+\bullet) \oplus(\bullet+\bullet)=(\bullet+\bullet)$

Addition on Genus 2 Curves

Motto: "Any complete collection of points on a function sums to zero."

To add and reduce two divisors $P_{1}+P_{2}$ and $Q_{1}+Q_{2}$ in genus 2:

- The four points $P_{1}, P_{2}, Q_{1}, Q_{2}$ lie on a unique function $y=v(x)$ with $\operatorname{deg}(v)=3$.
- This function intersects H in two more points R_{1} and R_{2} :
- The x-coordinates of R_{1} and R_{2} can be obtained by finding the remaining two roots of $v(x)^{2}+h(x) v(x)=f(x)$.
- The y-coordinates of R_{1} and R_{2} can be obtained by substituting the x-coordinates into $y=v(x)$.
- Since $\left(P_{1}+P_{2}\right)+\left(Q_{1}+Q_{2}\right)+\left(R_{1}+R_{2}\right)=0$, we have

$$
\left(P_{1}+P_{2}\right) \oplus\left(Q_{1}+Q_{2}\right)=\overline{R_{1}}+\overline{R_{2}} .
$$

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$.

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$. r of the roots of $w(x)$ are the x-coordinates of the P_{i}.

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$. r of the roots of $w(x)$ are the x-coordinates of the P_{i}.
- If $r \geq g+2$, then $\operatorname{deg}(w)=2 r-2$, yielding $r-2$ further roots.

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$. r of the roots of $w(x)$ are the x-coordinates of the P_{i}.
- If $r \geq g+2$, then $\operatorname{deg}(w)=2 r-2$, yielding $r-2$ further roots. If $r=g+1$, then $\operatorname{deg}(w)=2 g+1$, yielding g further roots.

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$. r of the roots of $w(x)$ are the x-coordinates of the P_{i}.
- If $r \geq g+2$, then $\operatorname{deg}(w)=2 r-2$, yielding $r-2$ further roots. If $r=g+1$, then $\operatorname{deg}(w)=2 g+1$, yielding g further roots.
- Substitute these new roots into $y=v(x)$ to obtain $\max \{r-2, g\}$ new points on H.

Geometric Reduction

To reduce $D=\sum_{i=1}^{r}\left[P_{i}\right]$, iterate as follows until $r \leq g$:

- The r points P_{i} all lie on a curve $y=v(x)$ with $\operatorname{deg}(v)=r-1$.
- $w(x)=v^{2}-h v-f$ is a polynomial of degree $\max \{2 r-2,2 g+1\}$. r of the roots of $w(x)$ are the x-coordinates of the P_{i}.
- If $r \geq g+2$, then $\operatorname{deg}(w)=2 r-2$, yielding $r-2$ further roots. If $r=g+1$, then $\operatorname{deg}(w)=2 g+1$, yielding g further roots.
- Substitute these new roots into $y=v(x)$ to obtain $\max \{r-2, g\}$ new points on H. Replace D by the new divisor thus obtained.

Since $r \leq 2 g$ at the start, $D_{1} \oplus D_{2}$ is obtained after at most $\lceil g / 2\rceil$ steps.

Addition in Genus 2 - Example

Consider $H: y^{2}=f(x)$ with $f(x)=x^{5}-5 x^{3}+4 x+1$ over \mathbb{Q}.
To add \& reduce $(-2,1)+(0,1)$ and $(2,1)+(3,-11)$, proceed as follows:

- The unique degree 3 function through $(-2,1),(0,1),(2,1)$ and $(3,-11)$ is $y=v(x)$ with $v(x)=-(4 / 5) x^{3}+(16 / 5) x+1$.
- The equation $v(x)^{2}=f(x)$ becomes

$$
(x-(-2))(x-0)(x-2)(x-3)\left(16 x^{2}+23 x+5\right)=0
$$

- The roots of $16 x^{2}+23 x+5$ are $\frac{-23 \pm \sqrt{209}}{32}$.
- The corresponding y-coordinates are $\frac{-1333 \pm 115 \sqrt{209}}{2048}$. So

$$
\begin{aligned}
& (-2,1)+(0,1) \oplus(2,1)+(3,-11)= \\
& \left(\frac{-23+\sqrt{209}}{32}, \frac{1333-115 \sqrt{209}}{2048}\right)+\left(\frac{-23-\sqrt{209}}{32}, \frac{1333+115 \sqrt{209}}{2048}\right) .
\end{aligned}
$$

Geometric Method with Mumford Representations

Problem: divisors are usually represented with polynomial pairs (Mumford) as opposed to formal sums of points

Costello/Lauter (2011): problem solved!

- find interpolating polynomial $\ell(x)$ via linear system solving
- $\ell(x)-v_{i}(x) \equiv 0\left(\bmod u_{i}(x)\right)$ yields g linear equations in the coefficients of ℓ
- combining equations from $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) yields a linear system of dimension $2 g$
- avoid computing roots to find $u(x)$:
- compute $u(x)$ by equating coefficients of

$$
u(x) u_{1}(x) u_{2}(x)=\ell(X)^{2}-f(x)
$$

- compute $v(x)=\ell(x) \bmod u(x)$

Explicit Formulas

Algorithms above are decribed in terms of polynomial arithmetic in $K[x]$.

- For fixed, small g, can express the operations in terms of arithmetic of field elements.
- Gives further opportunities to optimize (reduce field inverstions) and eliminate redundant computations

Some techniques used:

- Compute resultant instead of GCD (via Bezout's matrix)
- Optimize exact polynomial divisions
- "Montgomery's Trick" for simultaneous inversions: compute $I=(x y)^{-1}, x^{-1}=l y, y^{-1}=I x$
- Karatsuba for polynomial multiplication, polynomial reduction

Inversion-Free Arithmetic via Projectivization

Represent the divisor

$$
(u, v) \text { with } u=x^{2}+u_{1} x+u_{0} \text { and } v=v_{1} x+v_{0}
$$

with

$$
\left[u_{1}^{\prime}, u_{0}^{\prime}, v_{1}^{\prime}, v_{0}^{\prime}, z\right] \text { where } u_{1}=u_{1}^{\prime} / z, u_{0}=u_{0}^{\prime} / z, \text { etc. }
$$

Idea:

- extra coordinate z accumulates values that would have been inverted
- multiply representation through by z to clear denominators and avoid inversions

Fastest formulas for genus 2, odd characteristic:

- Hisil/Costello (2014): Jacobian coordinates (weighted projectivization requiring three extra coefficients)

Explicit Formulas: state-of-the-art

Genus 2 hyperelliptic curves (ramified model):

- Lange et al.: very well developed (explicit versions of algebraic method)
- Costello/Lauter (2011): explicit formulas for genus 2 using geometric method
- Lindner/Imbert/J. (2016): combination of algebraic and geometric, double-add, triple

Higher genus (ramified models):

- Very well developed for genus 3
- Pelzl et al. 2003: explicit formulas for genus 4 ramified models
- Research in progress for split models

