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Abstract. We give an overview of methods used to track moving objects in video, and describe
how information about animal behaviour can be extracted from tracking data. We discuss how
computer aided observation can be used to identify and pre-select potentially interesting video
sequences from large amounts of video data for further observation, as well as directly analyze
extracted data. We examine how this analysis can be used to study animal behavior. As an
example, we examine thermal video recorded from free-living, nocturnal, wild mice in the Genus
Peromyscus.

1. Introduction

Methods for the automating the processing of digital video have been a topic of research since
the mid 1980s [1]. These techniques have been used extensively in traffic surveillance and security.
In the past decade, automated analysis of video has become increasingly popular in the study
of animal behavior, both in the laboratory and the wild. For example, the individual and social
behaviors of fruit flies in a planar arena in a laboratory setting has been quantified using data
obtained with computer vision methods [3].

As part of a larger study examining vocal communication among wild deer mice (Peromyscus
species) [5] infrared video was collected over 131 nights from dusk until dawn. The video was taken
from a camera suspended in the tree canopy above the free-living mice on the forest floor. The
video was recorded non-stop, regardless of the level of mouse activity. Thus, the volume of video
recordings obtained in this study is a challenge to manually process. Computer vision techniques
however, allow us to detect and record the trajectories of moving objects from the video data
without human intervention. In the initial phase of the project, mouse trajectories were extracted
from short clips of the video recordings with the goal of analyzing the speed of mice [13] and data
extracted from the video was validated by a human observer [2]. As the result of this experience we
are now able to process the approximately 1500 hours of video and extract biologically meaningful
data.

In this paper we report on the methods we used to track the movement of mice in video material
and describe how we obtained biologically relevant information from the tracking data, namely
measures of mouse activity. The results of our analysis are subject of a forthcoming publication by
the authors.

Notation. We will use the following notation in our discussion of video and image data. We
represent an image as an m× n matrix F ∈ Cm×n, where C denotes a color space. We denote the
(x, y) entry in F by Fx,y, and refer to it as a picture element, or pixel.

Common examples of color spaces are black and white ( C0 = {0, 1} ), grayscale (Cg =
{0, . . . , 255}), and true color ( Ct = {(R,G,B) | R,G,B ∈ {0, . . . , 255}). For ease of presentation
we will limit most of our discussions to grayscale images and video. It can be easily generalized to
other color spaces.

A video V is a sequence of images,

V = (F1, F2, ..., Fn),
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where n ∈ N is the number of images in the video. Each image is called a frame, and those frames
are displayed at a constant frame rate, which is typically 24, 25, or 30 frames per second.

2. Foreground Isolation

One of the most fundamental applications of automated video processing is the identification
and tracking of moving objects. The most common tracking method is referred to as blob tracking.
This process involves isolating foreground from background information by means of background
subtraction, identifying foreground connected components, or collections of adjoined pixels, and
tracking those over time.

For our purposes, we consider each pixel of a video image to belong to either to the foreground
or the background, where the background is the set of pixels which are static, or predominantly
unchanging, and the foreground is the set of all other pixels.

The foreground isolation functions return a black and white image M called the foreground mask.
A pixel of value Mx,y = 0, or black, represents a background pixel, and a pixel of value Mx,y = 1,
or white, corresponds to a foreground pixel. We call foreground objects, or clusters of foreground
pixels, blobs in in the image M .

Background Subtraction. If the pixels corresponding to the background are known, then the
foreground can be extracted by taking the absolute difference s(F,B) of a frame F and a reference
background image B, where

s : Cm×n × Cm×n → Cm×n, s(F,G) = H where Hx,y = | Fx,y −Bx,y | .

Clearly if s(F,B)x,y = 0 then Fx,y belongs to the background. Because we want to allow some
fluctuation in the background pixels a threshold function is used to decide whether a pixel belongs
to the foreground or background:

t : Cg
m×n × Cg → Cm×n0 , t(F, c) = G where Gx,y =

{
0 if Fx,y < c
1 else

For each frame F , if F ′ = s(F,B), then the foreground mask can be given by t(F ′, c), where c is
typically greater than 200 for grayscale images.

There are various methods for determining the background image, which can be static or up-
dated with every frame, for example:

First Frame Method: If the first frame of the video only consists of background the first frame
can be used as the background image. This yields the fastest background subtraction method.

Average Frame Method: The average of all frames of the video is used as a background image.
This can work even if objects are present in the foreground of all frames, as long as those objects
move frequently. Because the entire video must be processed prior to tracking, this method does
not allow video processing in real time.

Running Average of Frames Method: Using the running (weighted) average of all previous
frames as the background image yields better results, particularly when there are frequent subtle
changes in lighting. Typically, the background B is initialized to the first frame F0, and after
processing each subsequent frame F , B is updated to wα(F,B) where

wα : Cm×n × Cm×n → Cm×n, (wα(F,B))x,y = bαFx,y + (1− α)Bx,yc.

for some α ∈ (0, 1).
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Dilation and Erosion. Often, a foreground pixel is similar in intensity or color to the correspond-
ing background pixel. In this case, the foreground pixel is likely to be improperly classified as a
background pixel. This can result in hole within a connected component, or two distinct connected
components that represent the same object.

To prevent such errors, a series of morphological operations can be applied namely dilation and
erosion. Dilation increases the size of blobs, merging blobs that represent the same object and
removing holes. Erosion reduces the size of blobs, and smoothes edges. These operations are often
combined with foreground isolation techniques.

In each operation, the value of a pixel Fx,y is set to either the lightest or darkest pixel value in
the neighborhood specified by a kernel. The kernel can be described as a set of relative coordinates
K ⊂ Z × Z. The neighborhood of Fx,y specified by K consists of the pixels with coordinates in
{(x+ i, y + j) | (i, j) ∈ K}. The dilation of an image F using the Kernel K is

dK : Cm×n → Cm×n, dK(F ) = G with Gx,y = max{Fx+i,y+j | (i, j) ∈ K}.
The erosion of F using the Kernel K is

cK : Cm×n → Cm×n, cK(F ) = G with Gx,y = min{Fx+i,y+j | (i, j) ∈ K}.
It is common to choose a simple kernel, such as K = {(i, j) | i, j ∈ {−1, 0, 1} }.

Typically, a series of dilation and erosion operations are applied to the foreground mask in the
form of open and close operations, where opening is the dilation of an erosion, and closing is the
erosion of a dilation. Both opening and closing will result in blobs very close to their original size.

An Advanced Method. More often than not, however, videos of interest will not contain a sta-
tionary background. In such cases, it is necessary to seek more intelligent methods of distinguishing
foreground pixels from background pixels. The method chosen for our application, developed by
Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian, uses a Bayes decision rule to classify
objects as foreground and background [10]. It is designed to accommodate two types of changes in
background state: gradual changes, such as changes in natural lighting, and rapid changes, such
as a camera rotation or tree branch movement. Stationary background pixels are classified by
their color features, while moving background elements are classified by their color co-occurrence
features. The algorithm consists of four steps: detection of state changes, classification of state
changes, foreground object identification, and background learning and maintenance. For each
frame, the following steps are executed:

(1) Generate background model
(2) Perform simple background subtraction to remove pixels of insignificant change
(3) Classify each remaining pixel as stationary or moving
(4) If stationary, compare pixel value with learned color states and use a Bayes rule to determine

probability of being foreground
(5) If a pixel is classified as moving, compare color co-occurrence, along with color to the set

of learned states, and use Bayes rule to determine probability of being foreground
(6) Assign pixel to foreground or background accordingly
(7) Perform a pair of dilate-erode and erode-dilate operations to remove artifacts and connect

blobs
(8) Update the set of learned color states and color co-occurrence states
(9) Update the reference background image

3. Component Identification and Labeling

In order to identify specific elements of an image, it is important to identify the connected
components, which exist as sets of neighboring pixels. In this application, two pixels are considered
neighbors if the distance between them is less than or equal to

√
2 pixels.
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One way to identify objects is to use component contours as the primary identifying feature of
each object. An object’s contour is its set of edge pixels.

A simple method of identifying and labeling components in an image F ∈ Cm×n involves generat-
ing an associated label image, L ∈ Nm×n, with each pixel Lx,y consisting of the label corresponding
to the pixel Fx,y. An extremely efficient method, proposed by Fu Chang, Chun-Jen Chen, and
Chi-Jen Lu can be used for this task [6].

In the algorithm they present, an image F is processed left to right, and top to bottom. When
an external contour pixel is encountered, the entire contour is traced and, for each pixel Fx,y in the
contour, we set Lx,y = l, where l ∈ N is unique to this contour. Once the contour has been traced,
foreground pixels inside the contour are also labeled l. If an internal contour point is reached, the
internal contour is again traced, and labeled l. When a new external contour pixel is found, it is
labeled l+ 1, and the tracing process repeats. Each set of pixels of the same label is referred to as
a blob.

4. Blob Tracking

In each frame, blobs are labeled by order of detection, making it difficult to ensure a unique
label preservation between frames. Because of this, a blob will often have many labels over time,
some of which may correspond to labels assigned to other blobs. It is then necessary to check each
successive frame, and ensure that for any given blob, its label in the current frame corresponds to
its label in the previous frame. There are a number of methods to accomplish this. One simple
approach is to calculate a set of identifying features, such as size, location, location of centroid,
orientation, intensity or color for each blob. After labels are assigned in each frame, the features of
each blob are compared to those of every blob in the previous frame that is within a set distance,
and labels are re-assigned accordingly. The set of features for each blob can then be output as
track information, sorted by blob label.

Tracking Data. Because video frames are processed sequentially, blob data generated by the
tracker are returned in sequential order. After each frame, the tracker returns data for each blob,
consisting of the unique label of the blob (not to be confused with the labels of the components in
the frame), its position, its size, and the number of frames the blob has been present. Additional
information, such as bounding boxes, histogram information (of use in color video), velocity and
acceleration vectors can also be extracted. However, because it would require inference, rather than
direct observation, to generate velocity and acceleration data, introducing uncertainty, this data
was not produced. In addition, because the thermal videos are in greyscale, color information was
ignored.

5. Object Tracking in the Mouse Videos

We describe the video material with which we worked, how the tracking was done, and discuss
some challenges we encountered and some decisions we needed to make to obtain as much usable
data as possible.

The videos were recorded during research where audio, video, and telemetry data were used to
analyze the ultrasonic vocalizations of two species of free living mice, Peromyscus californicus and
P. boylii. The fieldwork took place over 131 nights at the Hastings Natural History Reservation in
upper Carmel Valley, California, USA, during the winters of 2008 and 2009. A detailed description
of the methods, with example data representing audio, video and telemetry, can be found in [5].

The Mouse Videos. A thermal-imaging camera was suspended by a simple pulley system in the
tree canopy approximately 10 m above the ground, allowing continued recording of active mice in
the field of view, through the night. The camera used was a Flir Photon 320 with a resolution
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Figure 1. The four images show a still from an infrared video, background image,
the foreground mask, and the foreground mask after dilating twice. The two blobs
on the left are partially concealed mice, the blob on the right is another mouse.

of 320 by 240 pixels at 30 frames per second in grayscale. The video was recorded with a JVC
Everio GZ-MG 555 hard disk camcorder connected to the camera with a composite video cable at
an upscaled resolution of 720 by 480 pixels. In the following all pixel measures refer to pixels in
the recorded video.

Our Implementation. Previously available animal tracking software was primarily designed for
the analysis of animal behavior in a laboratory setting [7, 9], with animals moving in front of a stable
background. This specialization make them less suitable for processing videos of animals in natural
environments, where lighting changes and background movement occur frequently. Moreover, many
relevant behaviors will be seen in natural environments without a stable background.

For this reason, we wrote a tracking program based on the C++ libraries OpenCV [12] and
cvBlob [8], which are freely available under a BSD licence and the LGPL respectively. OpenCV
provided implementations of the algorithms needed for the foreground identification (where we used
the advance method described in section 2) and the image clean up steps.

Because of the small size of the mice (about 40 square pixels in the upscaled resolution, 10 square
pixels at camera resolution) we use two dilation and no erosion steps in the image clean up after
foreground identification.

The foreground isolation and clean up steps are illustrated in Figure 1.
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The library cvBlob offered the functionality needed for the blob tracking step, including an
implementation of the block labeling algorithm described in section 3. We found that the simple
blob tracking methods implemented in cvBlob were sufficient for our application.

For openCV and cvBlob installation instructions, see the websites given in the references. For
an introduction to OpenCV, see the openCV book [4]. The functions for the post processing were
written using the Python based computer algebra system Sage. The blob tracking program outputs
tracking information in the form of a raw text, which is imported into Sage and processed.

A shell script calling the video processing and post processing was written, allowing several
hundred videos to be processed in one batch.

Data Filtering. Although the program is able to disregard most noise, some noise may be cate-
gorized as legitimate foreground information. However, these false tracks typically have very short
durations. For this reason, we have chosen to ignore tracks of extremely short duration, which we
classify as tracks less than ten frames long, or one third of a second. It is also the case that a warm
wind will occasionally heat up a stationary background element, such as a rock or mouse trap, for
a time longer than ten frames. To account for these false tracks, we discard any track for which
there is no movement.

Blob Classification. Once the tracks are filtered, blobs are categorized based on size and speed.
For mice, we calculated an expected size based on known biological size ranges, which we converted
to a pixel area based on the dimensions of each focal area. Because these dimensions varied across
focal areas, we used a separate range for each area. In addition, we found that bats and birds
traveled significantly faster than mice. Any object that traveled faster than three pixels per frame
was considered to be a flying vertebrate.

6. Analysis of Tracks

We used the tracking information in two ways. In the first application, which we refer to as
computer aided observation, data were searched for information that targets specific events of
interest to human investigators, who then analyzed these events.

In the second application, which we refer to as automated analysis, the computer directly com-
putes data, which can then be used for the (statistical) analysis of behavior.

Computer Aided Observation. Computer aided observation is useful for finding specific events
which require qualitative analysis. An example of such an application may be to have the computer
extract all times in a video when several objects exist in concurrence. The investigator could then
watch the video, in order to determine if the objects (animals) influence each other’s behavior.

A script was written to report all times when objects of specific size ranges appear in videos.
These size ranges were used for two purposes. We used them to find predators such as cougars
(Puma concolor), bobcat (Lynx rufus), and foxes (Urocyon cinereoargenteus), by searching for
large blobs, which had an area greater than 500 square pixels. The videos were then observed,
in order to differentiate which blobs were predators, and which were graduate students setting up
equipment.

We also returned all times when objects in the expected size range of mice (80 to 120 square
pixels after dilation, depending on focal area) existed for a period of at least 5 seconds. From this
list, we selected a random sample of videos and times, and observed the videos. In all cases, we
found that the blobs in our expected size ranges corresponded to mice.

Automated Analysis. Although computer aided observation is a valuable tool, it is desirable for
the computer to do as much analysis as possible. While analysis of complex events and interactions
is difficult, some data lends itself to easy analysis. Examples of such data include analysis of size
distributions, speed of travel, and location preference (i.e. do objects have a tendency to be found
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in one region more often than another). Our primary application of automated analysis was to
analyze levels of mouse activity.

Measuring Mouse Activity. Often mice exit and reenter the field of view, or become temporarily
masked under dense vegetation. Because of the uncertainty introduced by these events, a decision
was made to use only observed data, and to not interpolate missing data. In addition, accurate
identification of individuals is difficult due to a lack of identifying features in thermal video. As
such, measures of activity that do not require the identification of individual mice were chosen. In
this way we avoid introducing unnecessary error.

Assume that a track is active from frame number m to frame number n. Let (xt, yt) be the
position of a blob, at frame number t. Because of the high sampling rate of the position of the blob
at 30 times per second

d =
n∑

t=m

√
(xt − xt−1)2 + (yt − yt−1)2

is a good approximation of the length of the track.
To measure the activity of mice on a given night, we use two values:

(1) the total observed distance D travelled by all mice throughout the night; that is, the sum
of the lengths of all observed tracks and

(2) the average speed S of all mice throughout the night; that is, S = D/T where T is the sum
of the lengths in time of all observed tracks.

These measures make it possible to investigate the change in mouse activity under various biotic
and abiotic environmental influences. This investigation is subject of a forthcoming publication of
the authors.

7. Conclusion

Automated tracking is remarkably useful. With a limited understanding of computer vision
techniques and moderate computer programming experience, it is possible to construct an auto-
mated video processing program suitable for analyzing some types of animal behavior. The results
obtained from these types of programs, e.g. tracking information, help us to answer numerous
biological questions and save researchers a great deal of time. Useful information can often be
obtained from even poor quality video.

Some caveats exist however. For example, it is difficult to distinguish amongst individuals in
gray-scale video. Also, it is difficult to extract accurate tracking data from videos containing large
amounts of background movement, which is often a result of wind when a camera is set-up with
a hanging-pulley system. An easy solution would be to anchor the camera in such a way so that
swaying in windy conditions would be prevented.

We believe that automated video processing provides a meaningful alternative to traditional
methods of studying animal behavior, especially that of a nocturnal, secretive species. Past behav-
ioral studies have resorted to methods such as trapping [11], sand transects [14], or test arenas [15].
With proper setup, remotely recorded video, along with automated video processing techniques,
can provide information not traditionally available. This information includes data such as speed,
distance traveled, frequency of travel, and number of animals in a given space at a given time.
This type of information in a natural setting provides crucial information to better understand the
evolution and maintenance of behaviors in natural contexts. The use of thermal imaging allows for
the collection of these types of data on secretive and nocturnal rodents. Moreover, automated video
processing presents a means to efficiently analyze the behaviors present in such videos, although it
is equally capable of analyzing behavior in traditional video.
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