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Abstract. Kleptoparasitism, the stealing of food items, is a widespread bio-
logical phenomenon. In this paper we extend earlier models of kleptoparasitism
to investigate a finite population of individuals involved in foraging and, po-
tentially, kleptoparasitism. We assume that the population consists of two
types of individuals, Hawks and Doves. Hawks use every opportunity to steal
and they also defend their food items. Doves never resist and never steal. We
derive and study the stochastic model of this kleptoparasitic population. We
compare the stochastic model with the deterministic model of a Hawk-Dove
game in kleptoparasitic populations as well as with the abstract version of the
game. We demonstrate that the outcome of the model depends upon various
natural parameters, for example food density, the handling time of a food item,
the size of the population, as well as the duration of potential fights over the
food. The exact dependence on parameter values is much richer in stochastic
description than in the deterministic version.

1. Introduction

Kleptoparasitism (parasitism by theft) is the stealing of prey that has been
caught by another individual, [27]. In a broader perspective, it is a form of feeding
where one individual takes prey from another that has caught, killed, or other-
wise prepared it. The most common observations of kleptoparasitism have been
amongst birds [3, 4, 13]; however it has been observed and documented across a
great diversity of taxa such as large carnivorous mammals [10, 19], lizards [11], fish
[15, 16], insects [18, 26], snails [17], and spiders [1].

There is now a substantial literature of works using game theoretic models to
investigate kleptoparasitic behavior in nature (e.g. [2, 30, 8, 28, 9]). Almost all
of the models are deterministic, based on a certain system of ordinary differential
equations and thus implicitly assuming an infinitely large population of individu-
als. However, model organisms that exhibit kleptoparasitism either live in or are
observed in relatively small populations and thus are likely to violate assumptions
of infinite population size models. To our knowledge, only two papers to date ([23]
and [32]) proposed stochastic models for finite kleptoparasitic populations.

In this paper, we extend earlier models of kleptoparasitism from [8] and [32] to
investigate a finite population of conspecifics involved in foraging and, potentially,
kleptoparasitism. We assume that the population consists of two types of individu-
als, Hawks and Doves. Hawks use every opportunity to steal and they also defend
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their food items. Doves never resist and never steal. We derive and study the
stochastic model of the population. Using Gillespie’s algorithm [14], we perform
the MCMC simulations. We conclude that the outcome of the dynamics depends
upon various natural parameters, for example food density, the handling time of
a food item, the size of the population, as well as the duration of potential fights
over the food. We compare the stochastic model with the deterministic model as
well as with the classical version of the abstract Hawk-Dove game.

2. The classical Hawk-Dove game

The Hawk-Dove game (also known as the game of chicken [25]) was introduced
by John Maynard Smith and George Price in [22]. It is used to describe a situation
in which there is competition for a shared resource and the contestants can choose
either an aggressive (Hawk) or non-aggressive (Dove) strategy for the competition.
Mathematically, it is a two player zero sum matrix game with the payoff matrix
usually given by

Hawk Dove
Hawk V/2 − C/2 V
Dove 0 V/2

where V is the value of the contested resource, and C is the cost of an escalated
fight (see [20, 21]). It is (almost always) assumed that the value of the resource is
less than the cost of a fight, i.e.,

C > V > 0

The entries of the matrix reflect the fact that when Hawk encounters Hawk, one
of them will get a resource of value V whereas the second will bear the cost of
the fight C (or, equivalently, both will bear their share of a cost of the fight C/2).
When Hawk meets Dove, Hawk gets the whole resource while Dove gets nothing.
Finally, when Dove meets Dove, they “split”.

It can be calculated (see e.g. [20]) that, if C > V > 0, then the population tends
to an equilibrium where the fraction of Hawks in the population equals to V

C . If
C < V , then Hawk only population is the stable equilibrium.

3. Deterministic model of kleptoparasitic Hawk-Dove game

The basic structure of our model follows and extends the deterministic models
introduced in [8, 6]. Individuals forage for food, and can be in one of the following
four states:

• searcher – looking for food, but having yet to find it;
• handler – having found food, preparing to consume it;
• challenger – having come across a handler, trying to steal the food item;
• defender – trying to resist the challenge of another.

We assume that individuals take an exponential time, with mean th, to handle a
food item, and that the food is consumed instantly at the end of this period.

We consider a population consisting of the two types. A type is determined by
the reaction of an individual to an encounter with another, where one of the two
birds is handling food, and the other has an opportunity to try to steal it.

Hawk always attacks, always resists when attacked
Dove never attacks, never resists when attacked
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Table 1. The model parameters and their definitions (top section)
and notation (bottom section).

Symbol Meaning
νf rate that individuals search for food items
f food density
νh rate that individuals search for handlers
th expected handling time (if unchallenged)
ta

2
expected duration of a contest over food

α probability that the challenger wins the contest
N number of Hawks in the (finite) population

π chances that an average Hawk will do better than an invading Dove
H total number of Hawks
Hs number (or density, for deterministic model) of searching Hawks
Hh number (or density, for deterministic model) of handling Hawks
D total number of Doves
Ds number (or density, for deterministic model) of searching Doves
Dh number (or density, for deterministic model) of handling Doves

Each individual is initially searching for food items. We assume that they find food
at rate νff (where f is the density of food). At the same time, Hawks are searching
for handlers as well (at rate νh).

When a Hawk finds a handler, it challenges and tries to steal its food. If the
handler is a Dove, it will surrender the food item (and has to search again for
another one). But if the handler is a Hawk, it will defend its food and they will
fight for it. The challenger wins the fight with probability α ∈ (0, 1).

If the fights are only between Hawks, i.e. at the end of the fight it will always
be a Hawk that will win (and will start handling) and a Hawk that will lose (and
will start searching for another food item), all of the results presented here are
independent of α and we assume that α = 1/2. The choice α = 1/2 allows the
most natural interpretation of the results that follows, as it means that it takes,
on average, 2 fights for a Hawk to win and obtain food. The fights take a random
time with exponential distribution with mean ta

2
. We assume that the only cost of

the fight is the time spent in the contest.
Also, since the fights are between Hawks only, we can simplify the structure of

the model by merging challengers and defenders into fighters (once the individuals
enter the fight, there is no real distinction between them). All of the parameters
are summarized in Table 1.

3.1. Conclusions of the deterministic model. The deterministic model for
infinite population was studied in [6]. The core of the paper was to analyze a system
of differential equations (for densities of individuals engaged in certain activity)
based on the diagram in Figure 1.

The fitness, i.e. how well a certain strategy does is measured by how much time
an individual using that strategy spends in the handling state. For an individ-
ual type, its fitness is proportional to the fraction (density of handling individu-
als)/(total density of individuals), see [6]. In the setting of this model, the value
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Figure 1. Phase diagram for deterministic model of Hawk - Dove
kleptoparasitic population. The dashed arrows represent how cer-
tain states influence a transition between other states.

of a food is the time needed to find it, i.e. V = (νf f)−1. The cost of the fight is
the time both Hawks spend fighting. Since each of them spends time ta

2
, we have

C
2

= ta

2
.

There are two conclusions - qualitative and quantitative - derived in [6] about
this model; and both conclusions are in an agreement with the abstract Hawk-
Dove game studied in Section 2. The qualitative conclusion is that the Hawk-only
population is stable if and only if C < V , i.e. if

ta < (νff)−1

This is equivalent to saying that the food is, on average, acquired faster by the
aggressive fighting than by a non-aggressive searching.

If C > V , then searching takes less time than winning the fight and, consequently,
a population of all Hawks can be invaded by Doves. Also, Hawks can invade Doves
under any circumstance and thus the population tends to a stable equilibrium where
both Hawks and Doves coexist. The quantitative conclusion is that the fraction of
Hawks in the stable mixture is given by

1

νffta
=

V

C

Notice that both conclusions are completely independent of the density of the pop-
ulation, the mean handling time, and the rate for searching handlers.

4. Stochastic model of kleptoparasitic Hawk-Dove game

The following stochastic model extends the model studied in [32] in the spirit of
the deterministic model introduced in Section 3. We have two types of individuals,
Hawks and Doves, behaving as described above. Although the schematic description
of the model is the same as for the deterministic model and as given by Figure 1,
the important distinction is that the stochastic model deals with the exact count of
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Figure 2. Transition diagram for a general state (a, b, c) - a state
of the population where currently a Hawks are searching, b Hawks
are handling, H − (a + b) Hawks are fighting, c Doves is searching
and D−c Doves is handling. The numbers by the arrows represent
the transition rates. Going south represents a Hawk found a food
item, going north represents a Hawk finished handling, going east
means two Hawks started fight, going west means Hawks finished
a fight, going southwest means a Hawk found a handling Dove,
going southeast means a Dove found a food item, going northwest
means a Dove finished handling.

the individuals rather than with densities. Specifically, the dynamics in the finite
population can be described by a Markov chain. At any given point of time, the
state of the population consisting of H Hawks and D Doves in total can be described
by a triple of (Hs, Hh, Ds), representing the number of searching Hawks, handling
Hawks, and searching Doves. Clearly, the number of handling Doves equals D−Ds

and the number of fighting Hawks equals to H − (Hs + Hh). Since the fights are
between pairs of individuals only, H − (Hs + Hh) must be even. Hence the states
of the population can be identified with

{(Hs, Hh, Ds), 0 ≤ Hs, Hh ≤ H, 0 ≤ Ds ≤ D, H − (Hs + Hh) is even}

For a fixed Ds, there are in total on the order of H2/4 states, [32]. Thus, we have
on the order of

H2(D + 1)/4

states of the dynamics. The transitions between those states are given in the
Figure 2.

The scheme on Figure 2 can eventually lead to the system of roughly H2(D+1)/4
linear equations describing the equilibria of the population. The system could
theoretically be solved using software packages like Maple (see [12] where similar
calculations are being done) and we could thus calculate a measure of fitness -
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a proportion of the time a single Hawk or a single Dove is spending by handling
a food item.

Here we concentrate on the qualitative analysis - a question when a single Dove
can invade a population of Hawks. Due to the stochastic nature of the model, this
question cannot be solved by simply calculating the average amount of time a Hawk
or a Dove spend by handling - even when the average is lower for a Dove, there
can be a nonzero chance that Dove will actually do better than Hawks. Indeed,
assuming a hypothetic scenario where the proportion of time Doves spend handling
is uniformly distributed in [0, 0.5] (thus averaging 0.25), while the proportion of
time Hawks spend handling is uniformly distributed in [0, 0.75] (thus averaging
0.375). Yet, there is only a 0.625 chance Hawks spend more time handling than
Doves in any particular realization.

Thus, we try to solve the following problems

1) What is a chance that in a population of N Hawks and a single Dove,
Hawks do better?

2) How does the chance depend on the Hawks count N and parameter values
νff, ta, th, νh?

5. Methods

Instead of solving the (potentially huge) system of linear equations based on
Figure 2, we perform the Markov Chain Monte Carlo simulations. We look at the
population as a system of chemical substances where the following reactions take
place:

searching Hawk
νf f
−→ handling Hawk

searching Dove
νf f
−→ handling Dove

handling Hawk
t−1

h−→ searching Hawk

handling Dove
t−1

h−→ searching Dove

searching Hawk + handling Dove
νh−→ handling Hawk + searching Dove

searching Hawk + handling Hawk
νh−→ pair of fighting Hawks

pair of fighting Hawks
2/ta
−→ searching Hawk + handling Hawk

We implement Gillespie’s algorithm as described in [14]. The algorithm assumes
that at every point of time, there is at most one reaction happening (this is in
agreement with the scheme in Figure 2). For an input, it takes the number of
reactants, the speeds of the equations, and the inner time of the system. Given this
input, it generates

a) when the next reaction occurs;
b) what reaction it will be.

Based on the above, it updates the number of reactants and the inner time of
the system and the cycle repeats itself. The algorithm stops when either enough
reactions were performed or when the inner time is greater than predetermined
value Tmax. We tracked the proportion of time an average Dove and Hawk spend
in a handling state (to assure compatibility with the description of the Markov
chain at Figure 2 and with the models introduced in [23, 32]). We set Tmax = 10
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in all of the reported simulations as this proved to be the threshold when outcomes
did not depend significantly on Tmax anymore. For each combination of N and
parameters νff, ta, th, νh we ran 10,000 simulations and tracked the proportion π
when an average Hawk did better than Dove.

6. Results

In this section we describe and discuss how π depends on N , νf f, ta, th, and νh.

6.1. Dependence on νffta and the comparison with deterministic model.

Both the stochastic and the deterministic models agree on the importance of a
relationship between (νf f)−1 and ta. The first is an expected time to acquire food
by searching, the other is an expected time to acquire food by fighting. No matter
what model is assumed, if νffta < 1, i.e. if time to get food by fighting is shorter
than the time to get food by searching, Hawks do better overall, and if νffta > 1,
Hawks generally do worse overall.

The difference between the stochastic and deterministic models is that, under
the deterministic model, νffta = 1 is a very strict threshold and Hawks either
always do better or always do worse than Doves, depending on what side of the
threshold the value of νffta is. Also, in the deterministic model, the outcome does
not depend on any other parameter value, including the density of the individuals,
time to eat food, or speed to find a handler.

In the stochastic model, on the other hand, the outcome depends on all of the
parameters. More importantly, Hawks are never 100% better than an invading
Dove and the proportion of the time when Hawks are better continuously decreases
from almost 1 (in most cases) to almost 0 as νffta increases from 0 to ∞. See
Figure 3.

Also, notice that in the stochastic model, Hawks do better even if νffta > 1 as
long as νffta is not too large. This effect is particularly strong for a population
with a small number of Hawks or when fights are long (small value of 2/ta) - both
circumstances yield to the condition when there is not enough handling Hawks
(either because there is not enough Hawks in total, or because the Hawks that are
in the population are busy fighting). And when there is only a small number of
handling Hawks, a handling Dove (as one of the very few handlers) is under greater
danger of being found by a searching Hawk.

6.2. Dependence on N . The proportion π depends on the size of Hawk popula-
tion, N . The exact relationship depends on the value of νffta being smaller than,
equal to, or greater than 1, see Figure 4.

If νffta < 1, then the proportion π increases as N increases (for small N) and
then the proportion becomes stable for N ≈ 20. If νffta = 1, the strategy of
Hawks is better in 58.85 % cases on average (std. deviation 0.59 %) and the result
is evidently independent of the number of Hawks N . If νffta > 1, the proportion
when the strategy of Hawks is better decreases with increasing small values of N ,
but the proportion becomes stable for about N = 20.

The reason why outcomes stabilize is that although we measure π, we are prac-
tically measuring what the impact is and how big the impact is with the different
parameter values on a single Dove that entered a population of Hawks. Since a Dove
then represents roughly 1/(N + 1) of the population, the impact gets negligible as
N increases.
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Table 2. Statistics of the simulations for the dependence of π
on N . In all cases νh = 0.7, 1/th = 0.7.

νffta < 1 and N = 2, . . . , 100

νffta Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
0.4 0.6615 0.7752 0.7846 0.7784 0.7901 0.7966 0.0205
0.8 0.6106 0.6532 0.6597 0.6586 0.6662 0.6761 0.0102

νffta < 1 and N = 20, . . . , 100

0.4 0.7645 0.7818 0.7869 0.7857 0.7907 0.7966 0.0064
0.8 0.6468 0.6553 0.6618 0.6616 0.6672 0.6761 0.0072

νffta = 1 and N = 2, . . . , 100

1 0.5741 0.5847 0.5887 0.5885 0.5926 0.6007 0.0059

νffta > 1 and N = 2, . . . , 100

1.2 0.5086 0.5170 0.5196 0.5216 0.5234 0.5746 0.0104
1.6 0.3701 0.3831 0.3871 0.3966 0.3972 0.5142 0.0266
2.0 0.2656 0.2774 0.2831 0.2974 0.2980 0.4805 0.0388

νffta > 1 and N = 20, . . . , 100

1.2 0.5086 0.5157 0.5187 0.5185 0.5215 0.5314 0.0047
1.6 0.3701 0.3815 0.3853 0.3866 0.3908 0.4062 0.0072
2.0 0.2656 0.2751 0.2811 0.2828 0.2895 0.3111 0.0100
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The table 2 summarizes the statistics of the outcomes of the simulations.
The results are qualitatively in agreement with the deterministic model. If

νffta < 1, i.e. if it is on average faster to acquire food by fighting than by search-
ing, Hawks should do better; and the more Hawks, the smaller chances for a single
Dove to finish handling undisturbed. The difference between the deterministic and
stochastic models is that a) Hawks never do better in 100% of the cases; and b)
after the Hawk population reaches a certain threshold, the chances of a Dove doing
better stabilizes (at relatively high nonzero value).

6.3. Dependence on νff . The proportion π decreases as νff increases. Moreover,
the rate at which it decreases is dependent on 2/ta and N - with the greater ta and
the greater N , the proportion π decreases faster. See Figure 5.
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The first is a natural result since the more food is available in the population, the
more likely it is for Hawks to find food rather than a handling Dove. Consequently, a
chance of a Dove doing better than Hawks increases as the density of food increases.
We did not perform extensive simulations for too large values of νff ; however it
is clear that in a limiting case of νf f ≈ ∞, there would be no distinction between
Hawks and Doves since any individual would find food almost instantly and thus we
have that π → 0.5 as νf f → ∞. Consequently, π as a function of νff is eventually
increasing.

The second result can be explained as the following. If the fights last longer and
if there are more Hawks in the population, the more Hawks are engaged in fights
rather than in handling, i.e. the initial decrease of π is steeper with larger ta and
larger N .

6.4. Dependence on ta. It can be seen from Figure 6 that π increases as ta

decreases.
This is natural, since the shorter the fights are, the better the Hawks do. The

effect of ta is actually doubled, because the less time Hawks spend fighting, the
more time they spend handling (which increases their fitness) but also by searching
(which decreases the fitness of a Dove since Hawks are looking for food items as
well as handlers).

Further, the proportion π is higher with smaller values of νf f and the same value
of ta. This is because the chance of a Dove being found while handling increases
if there is not enough food to search for. Moreover, the influence of νff on π is
stronger for larger N .

6.5. Dependence on νh. The dependence of π on νh is demonstrated on Figure 7.
The value of νh influences π in conjunction with νffta and N . The influence of
νh on π is more profound for smaller N and essentially vanishes as N gets larger
(reading the Figure 7 from top down). Also, the behavior of π as a function of
νh changes from increasing (when νf fta < 1), through constant (if νffta = 1),
to decreasing (if νffta > 1). Further, we observe that points are systematically
spread according the value of the parameter th. If νffta < 1, then π is a bit larger
with the greater value of th and the same value of νh. If νffta > 1, then π is a bit
smaller with the greater value of th and the same value of νh.

All of these observations are again natural. For large N , chances of a handling
Dove being found by a Hawk does not depend too much on νh - there are already
enough Hawks to look for a handler, and the handler itself can be either a Hawk or
a Dove - hence a relatively small change of νh will not make a significant difference
for a Dove.

Increasing νh results in all handlers, Hawks and Doves, being found faster. Thus,
the direction of dependence of π on νh is influenced by the value νffta. When
νffta < 1, i.e. when it is better to fight than to look for food, increasing νh

improves the fitness of Hawks since a Dove is being found faster (and thus cannot
eat so much food). Hawks are found faster as well; but the fights are relatively short
and so the harm to Hawks is smaller than the harm to a Dove. On the other hand,
if νffta > 1, it is better to look for food than fight and thus increasing νh decreases
π. It is true that a handling Dove is being found more often as νh increases, but
handling Hawks are found more often as well and, since fighting is not beneficial,
the harm to Hawks is greater.
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Figure 6. Dependence ESS on 2/ta for fixed νff . (Legend:
νf f = 0.1 solid, νff = 0.2 dashed, νff = 0.4 dotted, νff = 0.6
dotdashed, νff = 0.8 longdashed, νff = 1.0 twodashed). In all
cases νh = 0.7, 1/th = 0.7

The effect of 1/th on the dependence of π on νh can be explained by a similar
argument. As 1/th increases, individuals spend less and less time handling and
thus there is a smaller chance for a searcher to encounter a handler. If νffta < 1
(Hawks do better if they fight), the above benefits a Dove contrary to the effect
on increasing νh which benefits Hawks. If νffta > 1 (Hawks do better if they do
not fight), the increasing 1/th benefits Hawks contrary to the effect on increasing
νh which benefits a Dove. In other words, in the case of νffta < 1, the value of
proportion π is declined, and, in the case of νffta > 1, the value of proportion π is
advanced by the impact of increasing 1/th.

6.6. Dependence on th. Figure 8 shows the relation between π and 1/th. The
value of th influences π in conjunction with νffta and N . Similarly to the de-
pendence of π on νh, the influence of th on π is more profound for smaller N and
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almost vanishes as N gets larger (reading the Figure 8 from top to bottom). Also,
the behavior of π as a function of 1/th changes from decreasing (when νffta < 1),
through constant (if νffta = 1) to increasing (if νf fta > 1). Further, we observe
that points are systematically spread according the value of the parameter νh. If
νffta < 1, then π is a bit larger with the greater value of νh and the same value of
th. If νffta > 1, then π is a bit smaller with the greater value of νh and the same
value of th.

These results can be explained in the same way as in previous a case. By com-
paring corresponding graphs in Figure 7 and 8 we see that the relationship between
π and νh is stronger than between π and 1/th.

7. Summary

In this paper we have extended the classical Hawk-Dove game to model the finite
population of kleptoparasitic individuals.

We have demonstrated that there are some similarities between the introduced
stochastic description and the known deterministic model. In both cases, the major
indicator of the success or failure of Hawk strategy was a value of νffta. When
fights are beneficial (if νffta < 1, i.e. if food is rare or fights are short) Hawks
do better; when fights are not beneficial, Hawks do worse. This rule was a sole
indicator for Hawk’s success in the deterministic model of infinite populations, [6].
On the other hand, the situation in finite population was much richer and the
exact dependence was determined by a variety of natural parameters. In fact, any
parameter of our model (either by itself or in conjunction with other parameters)
had an impact on the outcome. Since we have naturally explained the impact of
any of the parameters, we argue that the stochastic model is much closer to the
description of the reality than a deterministic one.

Further analysis needs to be done. Recently, evolutionary game dynamics as well
as a notion of evolutionary stable strategy in finite populations was introduced in
[31] and [24]. We hope to apply the methods and results from those papers to our
particular model and to investigate the Hawk-Dove game in finite kleptoparasitic
population from that point of view.

Also we would like to point out that, to assure compatibility with deterministic
as well as recently introduced stochastic models ([23, 32]), we measured a fitness by
measuring a fraction of the time the individuals spent by handling. It is proved [7]
that, for infinite populations and independently of the individual type, this fraction
is proportional to the number of food items eaten. Our simulation allows us to count
the number of food items directly and we are currently investigating whether the
same relationship holds for finite populations as well.
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