Lecture 1

Expanders: combinatorial
 definition

Slogan: An expander graph is a finite graph, which is highly connected (in a robust way) sparse (not too many edges)

Remarkable facts:
(1) Such graphs exist
(2) They have amazing applications [in TCS, geometry, number theory, combinatorics, knot theory, arithmetic geometry ...]
1.1 - Graphs, examples

Informally:
- vertices
- edges between some pairs of vertices [unoriented]

Often we work with finite graphs \((\leq V, E)\) both finite; we write \(|\Gamma| = |V|\) for a graph

The number of vertices.

A graph is \(d\)-regular if
all vertices have d neighbors (with multiplicity) [loop counts as 1] not regular

Examples:

* C_m (cycles)

(2-regular)

(1-regular) C_1

C_2 (2-regular)

Def. (Girth)

A graph Γ has girth equal to $m \geq 1$ if it contains an m-cycle, and no smaller one.
Def. (Forest)
A graph is a forest if its girth is infinite.

Def. (Bipartite)
\(\Gamma \) is bipartite if
\[V = V_0 \sqcup V_1 \]

with all edges joining \(V_0 \)
to \(V_1 \).
Ex. \(K_m \): complete graph on \(m \) vertices: one edge between any vertices \(x \neq y \)

\[((m-1)\text{-regular}) \]

1.2. Distance

Def. \(G = (U, E) \) graph

\[x, y \in V \]

\[d_G(x, y) = \min \{ \text{length}(y) \mid y \text{ is a path in } G \} \]
Prop. \(d \) is a distance on \(X \) if
\[
\begin{aligned}
&d(x, y) = 0 \iff x = y \\
&d(x, y) = d(y, x) \\
&d(x, z) \leq d(x, y) + d(y, z)
\end{aligned}
\]
→ notions from geometry
 - connectedness: if the distance is always finite
 - diameter:

\[
\text{diam}(\Gamma) = \max_{(x,y) \in U^2} d(x, y)
\]

For many applications, having a "small" diameter is a good thing.

Ex. \[\text{diam}(C_m) \approx \frac{m}{2} \left(= \frac{1}{2} \right)\]

- \[\text{diam}(K_m) = 1\]
Lemma. If (Γ_n) is a sequence of finite d-regular graphs (d fixed), then

$$\exists c > 0, \quad \text{diam} (\Gamma_n) \geq c \log (|\Gamma_n|)$$

\Rightarrow The best diameter bound, without increasing the number of neighbors ("valencies") is about $\log (|\Gamma|)$.

1.3. Cayley graphs

Def. Let G be a group.

Let $S \subseteq G$ be a subset (not nec. a subgroup), with...
$S=S^{-1}$. The Cayley graph of G relative to S, denoted $\mathcal{G}(G, S)$ is the graph with

- vertices $= G$
- edges join g to gs for $g \in G$ and some $s \in S$

Example: $G = \mathbb{Z}/m\mathbb{Z}$

$S = \{1, -1\}$

$\mathcal{G}(\mathbb{Z}/m\mathbb{Z}, \{1, -1\})$

C_m
Changing S changes the graph!

$G = \mathbb{F}_2$, free group on two generators

$S = \{ a, a^{-1}, b, b^{-1} \}$

\mathbb{Z}^2

$(\pm 1,0), (0, \pm 1)$

grid

\rightarrow Infinite 4-regular tree

Facts:

1. $G(G,S)$ is $|S|$-regular
2. $G(G,S)$ is connected

\[S \text{ generates } G \]
(3) $G(6, 5)$ is bipartite

[Exercise 1.9]

$$\exists \, \varepsilon : G \rightarrow \{ \pm 1 \} \text{ group morphism, surjective, with } \varepsilon(s) = -1 \text{ for all } s \in S$$

[Counterex. $G = S_5$, $S = \{ \tau, \tau_2 \}$, $\tau, \tau_2 \in A_5$, \ldots]

1.4. Expansion in graphs

Want to define "sparse and robustly connected" sequences of graphs.

Sparse: every vertex has a bounded number of neighbors uniformly.
Connectedness: we ask for a small diameter.

Not so good:

\[\text{diameter: } \leq 3 \text{ but removing a single edge disconnects the graph!} \]

To get a better definition, one defines an invariant that "measures" robustness.
Definition (Cheeger constant)

\[h(G) = \min_{\emptyset \neq W, \frac{|W|}{|V|} \leq \frac{1}{2}} \left\{ \frac{|\partial W|}{|W|} \right\} \]

where \(\partial W \) is the set of edges with one extremity in \(W \), the other outside \(W \).

\[h(G) \] "small" means that \(G \) can be disconnected "easily."
Lemma. \(h(\Gamma) > 0 \) \[\uparrow \] \(\Gamma \) is connected.

Def. (Expander graphs)
A sequence \((\Gamma_n)_{n \geq 1} \) of finite graphs is an expander (family) \(\iff \)

(i) \(\lim_{n \to \infty} |\Gamma_n| = +\infty \)

(ii) max. nb. of neighbors is uniformly bounded (e.g. all \(\Gamma_n \) is \(d \)-regular with \(d \) fixed).
(iii) \(\exists c > 0 \) s.t. \(\forall n \geq 1, \ h(\Gamma_n) \geq c \).

Q. Do these exist??