Zigzag construction of Expander graphs
we construct an infinite sequence of d-regular expander graphs algorithmically via elementary operations.
Two operations: (1) Powering (2) Zigzag
(1) Powering:

$$
G \leadsto G^{2}
$$

G^{2} is the graph on the same set of vertices, and edges for two-step-walks. More accurately

$$
A_{\sigma^{2}}:=A_{G} \cdot A_{G} . \quad\left(\text { also } M_{\sigma^{2}}=M_{G} \cdot M_{G}, M_{G}=\frac{1}{d} \cdot A_{G}\right)
$$

G^{2} is d^{2}-regular

Claim: σ^{2} is d^{2}-regular, has eigenvalues $\left(\lambda_{i}^{2}\right)_{i=1}^{n}$.
(we can remove the d self loops: $A_{G^{2}}-d \cdot I$
(2) zigzag: G,H two graphs G(2)H
Notation: G is an (n, m, α)-graph denotes an m-regular graph on n vertices with $\max \left(\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right) \leqslant \alpha$.

$$
\forall i>1 \quad\left|\lambda_{i}\right| \leq \alpha \quad 1=\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geq \ldots \geqslant \lambda_{n} \geqslant-1
$$

Theorem [RVW '00]: : Assume G is (n, m, α)-graph H is (m, d, β)-graph Then $G\left(2 H\right.$ is an (nm, $d^{2}, \beta+\max \left(\alpha, \beta^{2}\right)$). graph.
we define the (2) operation First, an example:

more generally, (l) replace each G vertex by a copy of H
(2) connect G-edges to an available slot in the cloud
(3) New edges in G(3)H are H-edge then G-edge then H-edge.

In matrix form:
we define \tilde{A}_{H} a matrix for blue steps
also $\quad \widetilde{A}_{G}$ a matrix for purple steps

Our final adj matrix for GOUt will be $\breve{A}_{h} \breve{A}_{8} \breve{A}_{H}$

are the morning edges to u

$$
A_{G(2 H}:=\AA_{H} \breve{A}_{G} \breve{A}_{H} \leftarrow \text { adj matrix of zigzag product }
$$

why is this a good expander?
Suppose $S \subset V_{G O H}$. If S spits most clouds \rightarrow inner edges cross If S is full/empty on most clouds $\rightarrow \underset{\substack{\text { cross }}}{G}$

Proof of theorem:
Notation for a d-regular graph we let $M=\frac{1}{2} A_{G}$ be the normalized adj. matrix.

$$
\begin{aligned}
& \lambda=\max _{f \perp \overrightarrow{1}} \left\lvert\,\left\langle\frac{M f, f\rangle \mid}{\langle f, f\rangle}=\frac{\sum_{i=1}^{\sum_{i} \lambda_{i} \alpha_{i}^{2}}}{\sum_{i=1}^{\sum_{i}^{2}}} \text { (whence } f=\begin{array}{c}
\text { er's } \\
\langle \\
\alpha_{i}, v_{i}
\end{array}\right)\right. \\
& \left(\lambda=\max \left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right) \text {. } \\
& \text { (6) }\langle M f, g\rangle=\mathbb{E}(m f)(v) g(v) \\
& =\underset{v}{\mathbb{E}}\left[\begin{array}{c}
\mathbb{E} f(u)] \\
u n v
\end{array}\right)=\underset{\substack{u \sim v \\
\text { cal ledges } \\
\mathbb{E}}}{\mathbb{E}(u) \in \in)}
\end{aligned}
$$

Fix $f: V_{G \in H} \rightarrow \mathbb{R}$ sit. $\mathbb{T}_{\substack{u \sim V_{G} \\ i \sim v_{H}}}^{\mathbb{E}} f(u, i)=0 \quad$ need: $\left.k M f, f\right) \mid s b(f f f\rangle$.
Define $\quad f^{\prime \prime}(u, i)=\underset{j \sim v_{t}}{\mathbb{E}} f(u, j)$

Define $f^{\perp}(u, i)=f(u, i)-f^{\prime \prime}(4, i) \quad f^{\perp}$ - expectation $=0$ on each clovel.
$f=f^{\prime \prime}+f^{\perp}$

$$
\left|\left\langle M t^{\prime}, f\right\rangle\right|=\left|\left\langle M f^{\prime \prime}, f^{\prime \prime}\right\rangle+\left\langle M f^{1}, f^{\prime}\right\rangle+\left\langle M, f^{\prime \prime}, f^{\prime}\right\rangle+\left\langle M f^{\prime}, f^{\prime \prime}\right\rangle\right|
$$

$$
\leqslant\left|\left\langle M f^{\prime \prime}, f^{\prime \prime}\right\rangle\right|+\left|\left\langle M f^{\perp}, f^{\perp}\right\rangle\right|+2\left|\left\langle M f^{\prime \prime}, f^{\perp}\right\rangle\right|
$$

$$
\begin{aligned}
& \left|<\underset{\uparrow}{M f^{\prime \prime}}, f^{\prime \prime}\right\rangle|=|<\tilde{A}_{G} \overbrace{i A_{h} f^{\prime \prime}, \overbrace{i}^{\prime} \overbrace{H}^{\prime \prime} f^{\prime \prime}}^{f^{\prime \prime}}\rangle{ }_{d_{i} \cdot \theta_{G}} \\
& =\left.\left|<\overleftarrow{A}_{G} f^{\prime \prime}, f^{\prime \prime}\right\rangle\right|_{\lambda}\left|\left\langle n_{G} \hat{f}, \hat{f}\right\rangle\right| \\
& \text { wher } \hat{P}: V_{G} \rightarrow \mathbb{R} \quad \hat{P}(4)=f^{\prime \prime}(1,1) \\
& \underset{u \sim v_{a}}{\mathbb{E}} \hat{f}(u)=\underset{\substack{u \sim v_{G} \\
i \sim v_{u}}}{\mathbb{E}} f^{\prime \prime}(u, i)=\mathbb{E} f(u, i)=0 \\
& \leq \lambda_{G} \cdot\|f\|^{\prime \prime}\left\|f^{\prime \prime}\right\|^{2} \leq \lambda_{G}=\alpha \\
& \left|<m f^{\perp}, f^{\perp}>|=|<\tilde{m}_{G} \tilde{m}_{H} f^{\perp}, \tilde{m}_{H} f^{\perp}\right\rangle \mid \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& =\beta^{2} \cdot\left\|f^{2}\right\|^{2}
\end{aligned}
$$

Recall $\quad \tilde{m}_{H}=M_{H} \propto I_{v_{G}} \quad\left\|\widetilde{m}_{H} f^{+}\right\| \leq \lambda_{H} \cdot\left\|f^{+}\right\|$

$$
\begin{aligned}
& 2\left|<M f_{\uparrow}^{\perp}, f^{\prime \prime}>\right| \leqslant 2\left\|m f_{\substack{n \\
\lambda_{H}}\left\|f^{\perp}\right\|}\right\|\left\|f^{\prime \prime}\right\| s 2 \beta \cdot \underbrace{}_{\frac{-\|f\|^{2}}{2} .\|\cdot\| f^{\prime \prime} \|} \\
& \|f\|^{2}=\left\|f^{\prime \prime}\right\|^{2}+\left\|f^{\perp}\right\|^{2} \\
& \text { [Ancm: } \left.2 x y=\sqrt{x^{2}+y^{2}}\right] \quad{ }_{a}^{c} c \\
& |<M f, f\rangle \left\lvert\, \leqslant \underline{\alpha \cdot\left\|f^{\prime \prime}\right\|^{2}}+\underline{\frac{2 \beta\left\|f^{\prime \prime}\right\| \cdot\left\|f^{\prime}\right\|}{\| A n G M}+\underbrace{2}\left\|f^{2}\right\|^{2}}\right. \\
& \beta\left(\left\|f^{\prime \prime}\right\|^{2}+\left\|f^{-1}\right\|^{2}\right)=\beta\|f\|^{2} \\
& { }^{1} \beta\| \| f \|^{2} \\
& =\beta \cdot\|f\|^{2}+\alpha\left(\|f\|^{2}-\left\|f^{1}\right\|^{2}\right)+\beta^{2}\left\|f^{1}\right\|^{2} \\
& \leq \beta \cdot\|f\|^{2}+\max \left(\alpha, \beta^{2}\right) \cdot\|f\|^{2}
\end{aligned}
$$

Constructing an infinite sequence of d-regular expander graphs

$$
H_{0}
$$

starting point: take \ddot{H} to be $\left(d^{4}, d, \frac{1}{4}\right)$-gmat take $G_{1}=H^{2}$. $\left(d^{4}, d^{2}, \frac{1}{16}\right)$-mph

$$
\begin{aligned}
& \gamma \leqslant \beta+\max \left(\alpha, \beta^{2}\right) \\
& G_{n+1}=\left(G_{n}\right)^{2} \text { (2) H } \\
& \beta=\frac{1}{4} \quad \alpha=\frac{1}{256} \\
& \gamma \leqslant \frac{1}{4}+\frac{1}{16} \leqslant \frac{1}{2}
\end{aligned}
$$

Claim: G_{n} is a graph on $d^{\text {tn }}$ vertices, dene d^{2},

$$
\forall n \geqslant 1 \quad \max \left(\left|\grave{\lambda}_{n}\right|,\left|\lambda_{n}^{n}\right|\right) \leq \frac{1}{2}
$$

G_{n} is $a_{n}\left(d^{4 n}, d^{2}, \frac{1}{2}\right)$ - graph

Altogether, algorithm enumerates graphs to find good H, then proceeds inductively.

extra
Ex: "modifications"
Let G be (n, d, λ) graph $\lambda \leqslant 0.1$.
suppose we remove edges do from G so flat
$G^{\prime}=\left(v, E^{\prime}\right) \quad E^{\prime} \subset E$ is $\frac{d}{2}$ regular. is G^{\prime} still an expander?

