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Introduction

The Riemann zeta function

Definition

ζ(s) =
∞∑
n=1

1

ns
, where s = σ + it with σ > 1

Functional equation for ζ(s) where s ∈ C \ {1}

ζ(1− s) = 2Γ(s)ζ(s)(2π)−s cos
πs

2

ζ(s) has a simple pole at s = 1

Trivial zeros

ζ(−2j) = 0 for j ∈ N
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Introduction

The Riemann hypothesis and the derivatives of ζ

Prime number theorem

All non-trivial zeros of ζ are in the critical strip 0 < σ < 1.

Riemann hypothesis

All non-trivial zeros of ζ are of the form 1
2 + it.

Speiser 1934

Riemann hypothesis ⇐⇒ ζ ′(σ + it) has no zeros for 0 < σ < 1
2

Yildirim 1996

The Riemann hypothesis implies

ζ ′′ has no zeros in the strip 0 ≤ σ < 1
2

ζ ′′′ has no zeros in the strip 0 ≤ σ < 1
2
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Introduction

Plots of |ζ| and |ζ ′|

|ζ(σ + it)| for 0 ≤ σ ≤ 8 and 0.1 ≤ t ≤ 60

|ζ ′(σ + it)| for 0 ≤ σ ≤ 8 and 0.2 ≤ t ≤ 60
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Introduction

Zeros of ζ, ζ ′, and ζ ′′ (Spira 1965)
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Introduction

Zeros of ζ ′, ζ(34),ζ(67), ζ(100)
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Zero free regions Known zero-free regions

Known zero-free regions

If σ ≥ . . . , then the function has no zero for s = σ + it for all t ∈ R.

ζ ζ ′ ζ ′′ ζ(k) for k ≥ 3

Hadamard and de la 1
Vallée-Poussin 1896

Spira 1965 7
4k + 2

Verma and Kaur 1982 1.13588k + 2
Skorokhodov 2003 2.93938 4.02853

Note that

q2 :=
log log 2

log 3

log 2
3

= 1.13588 . . .
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Zero free regions Known zero-free regions

Zeros of ζ ′, ζ(34),ζ(67), ζ(100)
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Zero free regions Finding zero free regions

Finding zero free regions

We find s = σ + it such that∣∣∣ζ(k)(s)
∣∣∣ =

∣∣∣∣∣
∞∑
n=2

logk n

ns

∣∣∣∣∣
≥

∣∣∣∣∣ logk N

Ns

∣∣∣∣∣−
∣∣∣∣∣
N−1∑
n=2

logk n

ns
+

∞∑
n=N+1

logk n

ns

∣∣∣∣∣
=

logk N

Nσ
−

N−1∑
n=2

logk n

nσ
−

∞∑
n=N+1

logk n

nσ
> 0.

That is, for N ∈ N>1 we find the regions in C where ζ(k)(s) is dominated

by
logk N

Ns
.
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Zero free regions Finding zero free regions

Dominant Term

logk N

Ns
can dominate ζ(k)(s) =

∞∑
n=2

logk n

ns
if N ≈ e

k
σ .
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Zero free regions Finding zero free regions

qN

There is no dominant term if

logk N

Nσ
=

∣∣∣∣∣ logk N

Ns

∣∣∣∣∣ =

∣∣∣∣∣ logk(N + 1)

(N + 1)s

∣∣∣∣∣ =
logk(N + 1)

(N + 1)σ
.

This is the case when σ = k · qN where

qN =
log log(N+1)

logN

log N+1
N

.

In particular

q2 ≈ 1.13588, q3 ≈ 0.808484, q4 ≈ 0.668855.
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Zero free regions Finding zero free regions

The head Hk
M(σ) and the tail T k

M(σ)

Let

Hk
M(s) :=

M−1∑
n=2

Qk
n (s) =

M−1∑
n=2

logk n

ns

and

T k
M(s) :=

∞∑
n=M+1

Qk
n (s) =

∞∑
n=M+1

logk n

ns
.

Our goal will be to show that

|ζ(k)(s)| ≥ Qk
M(σ)−Hk

M(σ)−T k
M(σ) = Qk

M(σ)

(
1−

Hk
M

Qk
M

(σ)−
T k
M

Qk
M

(σ)

)
> 0
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Zero free regions Finding zero free regions

The head Hk
M(σ)

Hk
M(σ) =

M−1∑
n=2

logk n
nσ =

M−1∑
n=2

Qk
n (σ) = Qk

M(σ)

(
Qk

M−1

Qk
M

(σ) + · · ·+ Qk
2

Qk
M

(σ)

)
= Qk

M(σ)

(
Qk

M−1

Qk
M

(σ)

(
1+

Qk
M−2

Qk
M−1

(σ)
(

1 + . . .
(

1+
Qk

2

Qk
3

(σ)
)
. . .
)))

For 2 ≤ n ≤ M and σ ≤ qM−1k − cM where c ∈ R>0 a solution of
1− 1

ec−1 −
1
ec (1 + 1

c ) ≥ 0 we have

Qk
n−1
Qk

n

(σ) ≤
(

n

n − 1

)−cM
≤
(

M

M − 1

)−cM
≤ 1

ec
.

It follows that

Hk
M

Qk
M

(σ) ≤
∞∑
n=1

1

(ec)n
=

1

1− 1
ec
− 1 =

1

ec − 1
.
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Zero free regions Finding zero free regions

The tail T k
M(σ)

For σ ≥ qMk + c(M + 1) we have

T k
M(σ) =

∞∑
n=M+1

Q j
n(σ) =

∞∑
n=M+1

logk n
nσ ≤

∫ ∞
M

logk x
xσ dx

< logk M
Mσ

M
σ−1

(
1 + k

(σ−1) logM−k+1

)
With k ≥ kM = (2M+1)c

qM−1−qm this gives

Rk
M+1(σ) ≤ RkM

M+1(qMkM + c(M + 1)) <
1

c
.
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Zero free regions Finding zero free regions

The head Hk
M(σ) and the tail T k

M(σ)

Now

|ζ(k)(s)| ≥ Qk
M(σ)− Hk

M(σ)− T k
M(σ)

= Qk
M(σ)

(
1−

Hk
M

Qk
M

(σ)−
T k
M

Qk
M

(σ)

)

> Qk
M(σ)

(
1− 1

ec − 1
− 1

ec

(
1 +

1

c

))
≥ 0,
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Zero free regions New zero free regions

Zero Free Regions

Let k ∈ N and c ∈ R>0 a solution of 1− 1
ec−1 −

1
ec (1 + 1

c ) ≥ 0.

If M ∈ N, M > 3 and

qMk + (M + 1)c ≤ qM−1k −Mc

then ζ(k)(s) 6= 0 for

qMk + (M + 1)c ≤ σ ≤ qM−1k −Mc .
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Zero free regions New zero free regions

Zeros of ζ ′, ζ(34), ζ(67), ζ(100)
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Zero free regions New zero free regions

Zero-free regions of ζ(k) in the k-σ-plane
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Zero free regions New zero free regions

Extending the wedges

The tips of the wedges are at kM =
1

2
((qM + qM−1)k + c)

�
�
�
�
�

��
��

��
�

"
"

"
""

kMkM

M

M 3 4 5 6 7 8 9 10

kM at tip of wedge 20 77 163 291 465 691 971 1313
kM at tip of line 19 58 123 220 354 529 748 1014
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Vertical distribution of zeros Approximate results

Vertical distribution of non-real zeros

Riemann, van Mangoldt 1905

The number of zeros of ζ(σ + it) with 0 < t < T is

N(T ) = T
logT − 1− log 2π

2π
+ O(logT )

Berndt 1970

The number of zeros of ζ(k)(σ + it) with 0 < t < T is

Nk(T ) = T
logT − 1− log 4π

2π
+ O(logT )
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Vertical distribution of zeros Approximate results

Berndt’s proof

There is α ∈ R such that ζ(k)(σ + it) 6= 0 for σ < α. (Spira 1970).
Let τ > 0 such that ζ(k)(σ + it) 6= 0 for 0 < t < τ .

The number of zeros of ζ(k)(σ + it) with 0 < t < T is

Nk(T ) =
1

2πi

∫
C

ζ(k+1)(s)

ζ(k)(s)
ds =

I1+I2+I3+I4
2πi

= T
logT−1−log 4π

2π
+ O(logT )
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Vertical distribution of zeros Zero free line segments

Some zero-free points

If logk N
Ns and logk (N+1)

(N+1)s dominate ζ(k) and

logk N

Ns
=

logk(N + 1)

(N + 1)s

then ζ(k)(s) 6= 0.

Absolute value:
logk N

Nσ
=

logk(N + 1)

(N + 1)σ
,

hence σ = k · qN

Real part: cos(t · logN) = cos(t · log(N + 1))
Imaginary part: sin(t · logN) = sin(t · log(N + 1))

hence t =
2mπ

log(N + 1)− log(N)
for m ∈ Z
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Vertical distribution of zeros Zero free line segments

Zero Free Horizontal Line Segements

Lemma

If qMk + (M + 1) log 3 ≤ σ ≤ qM−1k −M log 3, then ζ(k)(s) 6= 0 for

s = σ + i · 2πj

log(M + 1)− logM
.
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Vertical distribution of zeros Locations of zeros

Locations of zeros of ζ(k)

If logk N
Ns and logk (N+1)

(N+1)s dominate ζ(k) and

logk N

Ns
= − logk(N + 1)

(N + 1)s

there might be a zero of ζ(k) close to s.

Absolute value:
logk N

Nσ
=

logk(N + 1)

(N + 1)σ
,

hence σ = k · qN

Real part: cos(t · logN) = − cos(t · log(N + 1))
Imaginary part: sin(t · logN) = − sin(t · log(N + 1))

hence t =
(2m + 1)π

log(N + 1)− log(N)
for m ∈ Z
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Vertical distribution of zeros Locations of zeros

Locations of zeros of ζ(k)

The point • is the only zero of logk M
Ms + logk M+1

M+1s inside the curve γ �.

qM+1k+(M+2)c

M+1

qM k�(M+1)c qM k

S k
M

qM k+(M+1)c

M

qM�1k�Mc

2(j+1)�

log(M+1)�logM

(2j+1)�

log(M+1)�logM

2j�

log(M+1)�logM

�

�

t

1 2 3 4 5 6

1

2

3

4

We have | log
k M

Ms + logk M+1
M+1s − ζ

(k)(s)| ≤ | log
k M

Ms + logk M+1
M+1s |.

By Rouché’s Theorem ζ(k)(s) has exactly one simple zero inside γ.
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Vertical distribution of zeros Locations of zeros

Number of Zeros Between Zero Free Regions

Corollary

Let Nk
M(T ) denote the number of zeros ρ of ζ(k)(s) with =(ρ) ≤ T and

qMk + (M + 1) log 3 ≤ <(ρ) ≤ qM−1k −M log 3. Then, for all j ≥ 1,

Nk
M

(
2πj

log(M+1)−log(M)

)
= j .
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Chains of zeros Examples

Zeros of derivatives of ζ (Skorokhodov 2003)

◦ zero of ζ

∗(n) zero of ζ(n)
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Chains of zeros On the far right

Zero Free Regions for ζ(100), ζ(200), ζ(400), ζ(800)
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Chains of zeros On the far right

Chains for large k

For M ∈ N, M ≥ 2 there is K ∈ N such that

qM+1k + (M + 2)c ≤ qMk − (M + 1)c for all k ≥ K .

For each k ≥ K and each j ∈ Z there is exactly one zero in a rectangular
region given by M, k , and j .

There exists a unique corresponding zero of ζ(k+1)(s) in the rectangular
region given by M, k + 1, and j .
Thus there is a chain of zeros

ζ(K)(s), ζ(K+1)(s), ζ(K+2)(s), . . . .
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Chains of zeros More examples

Zeros of the 1st to 40th derivatives of ζ

Binder (Lübeck), Pauli, Saidak (UNCG) Zeros of derivatives of ζ 34 / 39



Zeros of ζ and zeros of ζ(k)

Outline

1 Introduction

2 Zero free regions
Known zero-free regions
Finding zero free regions
New zero free regions

3 Vertical distribution of zeros
Approximate results
Zero free line segments
Locations of zeros

4 Chains of zeros
Examples
On the far right
More examples

5 Zeros of ζ and zeros of ζ(k)
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Zeros of ζ and zeros of ζ(k)

The curves s(c) given by ζ(s(c))− c = 0 for c ∈ [0, 1)

s = σ + it

• ζ(s) = 0

× ζ(s)− 1 = 0

— ζ(s)− c = 0
for c ∈ [0, 1)

The horizontal asymptotes are t = (2m+1)π
log 2 for m ∈ N.
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Zeros of ζ and zeros of ζ(k)

Zero free regions for ζ(s)− c

s = σ + it

• ζ(s) = 0

× ζ(s)− 1 = 0

— ζ(s)− c = 0
for c ∈ [0, 1)

— ζ(s)− c 6= 0
for c ∈ [0, 1)

— ζ(s)− 1 6= 0
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Zeros of ζ and zeros of ζ(k)

Zeros of ζ and zeros of ζ(k)

s = σ + it

• ζ(s) = 0

× ζ(s)− 1 = 0

— ζ(s)− c = 0
for c ∈ [0, 1)

•(k) ζ(k)(s) = 0

ζ(s) =
∑∞

n=1
1
ns ζ(s)− 1 =

∑∞
n=2

1
ns ζ(k)(s) =

∑∞
n=2

logk n
ns
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Thank You.
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