Distribution of the Zeros of the Derivatives of the Riemann Zeta Function

Tom Binder*, Adam Boseman[†], Sebastian Pauli[†], and Filip Saidak[†]

*Universität zu Lübeck and † University of North Carolina at Greensboro

Outline

Introduction

Zero free regions

- Known zero-free regions
- Finding zero free regions
- New zero free regions

Vertical distribution of zeros

- Approximate results
- Zero free line segments
- Locations of zeros

Chains of zeros

- Examples
- On the far right
- More examples

5 Zeros of ζ and zeros of $\zeta^{(k)}$

The Riemann zeta function

Definition

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
, where $s = \sigma + it$ with $\sigma > 1$

Functional equation for $\zeta(s)$ where $s \in \mathbb{C} \setminus \{1\}$

$$\zeta(1-s) = 2\Gamma(s)\zeta(s)(2\pi)^{-s}\cos{\frac{\pi s}{2}}$$

 $\zeta(s)$ has a simple pole at s=1

Trivial zeros

 $\zeta(-2j) = 0$ for $j \in \mathbb{N}$

The Riemann hypothesis and the derivatives of ζ

Prime number theorem

All non-trivial zeros of ζ are in the critical strip $0 < \sigma < 1$.

Riemann hypothesis

All non-trivial zeros of ζ are of the form $\frac{1}{2} + it$.

Speiser 1934

Riemann hypothesis $\iff \zeta'(\sigma + it)$ has no zeros for $0 < \sigma < \frac{1}{2}$

Yildirim 1996

The Riemann hypothesis implies

- ζ'' has no zeros in the strip $0 \le \sigma < \frac{1}{2}$
- ζ''' has no zeros in the strip $0 \le \sigma < \frac{1}{2}$

Plots of $|\zeta|$ and $|\zeta'|$

$|\zeta(\sigma + it)|$ for $0 \le \sigma \le 8$ and $0.1 \le t \le 60$

$|\zeta'(\sigma+it)|$ for $0\leq\sigma\leq$ 8 and $0.2\leq t\leq$ 60

Zeros of ζ , ζ' , and ζ'' (Spira 1965)

Binder (Lübeck), Pauli, Saidak (UNCG)

Outline

Introduction

2 Zero free regions

- Known zero-free regions
- Finding zero free regions
- New zero free regions

Vertical distribution of zeros

- Approximate results
- Zero free line segments
- Locations of zeros

Chains of zeros

- Examples
- On the far right
- More examples

5 Zeros of ζ and zeros of $\zeta^{(k)}$

Known zero-free regions

If $\sigma \geq \ldots$, then the function has no zero for $s = \sigma + it$ for all $t \in \mathbb{R}$.

	ζ	ζ'	ζ''	$\zeta^{(k)}$ for $k \ge 3$
Hadamard and de la	1			
Vallée-Poussin 1896				
Spira 1965				$\frac{7}{4}k + 2$
Verma and Kaur 1982				1.13588k + 2
Skorokhodov 2003		2.93938	4.02853	

Note that

$$q_2 := rac{\log rac{\log 2}{\log 3}}{\log rac{2}{3}} = 1.13588\dots$$

Zero free regions

Known zero-free regions

Finding zero free regions

We find $s = \sigma + it$ such that

$$\begin{aligned} \left| \zeta^{(k)}(s) \right| &= \left| \sum_{n=2}^{\infty} \frac{\log^k n}{n^s} \right| \\ &\geq \left| \frac{\log^k N}{N^s} \right| - \left| \sum_{n=2}^{N-1} \frac{\log^k n}{n^s} + \sum_{n=N+1}^{\infty} \frac{\log^k n}{n^s} \right| \\ &= \frac{\log^k N}{N^{\sigma}} - \sum_{n=2}^{N-1} \frac{\log^k n}{n^{\sigma}} - \sum_{n=N+1}^{\infty} \frac{\log^k n}{n^{\sigma}} > 0. \end{aligned}$$

That is, for $N \in \mathbb{N}^{>1}$ we find the regions in \mathbb{C} where $\zeta^{(k)}(s)$ is dominated by $\frac{\log^k N}{N^s}$.

Dominant Term

There is no dominant term if

$$\frac{\log^k N}{N^{\sigma}} = \left| \frac{\log^k N}{N^{s}} \right| = \left| \frac{\log^k (N+1)}{(N+1)^{s}} \right| = \frac{\log^k (N+1)}{(N+1)^{\sigma}}.$$

This is the case when $\sigma = \mathbf{k} \cdot \mathbf{q}_N$ where

$$q_N = rac{\log rac{\log (N+1)}{\log N}}{\log rac{N+1}{N}}.$$

In particular

 $q_2 \approx 1.13588, \quad q_3 \approx 0.808484, \quad q_4 \approx 0.668855.$

The head $H_M^k(\sigma)$ and the tail $T_M^k(\sigma)$

Let

$$H_M^k(s) := \sum_{n=2}^{M-1} Q_n^k(s) = \sum_{n=2}^{M-1} \frac{\log^k n}{n^s}$$

and

$$T^k_M(s) := \sum_{n=M+1}^\infty Q^k_n(s) = \sum_{n=M+1}^\infty rac{\log^k n}{n^s}.$$

Our goal will be to show that

$$|\zeta^{(k)}(s)| \ge Q_M^k(\sigma) - H_M^k(\sigma) - T_M^k(\sigma) = Q_M^k(\sigma) \left(1 - \frac{H_M^k}{Q_M^k}(\sigma) - \frac{T_M^k}{Q_M^k}(\sigma)\right) > 0$$

The head $H_M^k(\sigma)$

$$H_{M}^{k}(\sigma) = \sum_{n=2}^{M-1} \frac{\log^{k} n}{n^{\sigma}} = \sum_{n=2}^{M-1} Q_{n}^{k}(\sigma) = Q_{M}^{k}(\sigma) \left(\frac{Q_{M-1}^{k}}{Q_{M}^{k}}(\sigma) + \dots + \frac{Q_{2}^{k}}{Q_{M}^{k}}(\sigma) \right)$$
$$= Q_{M}^{k}(\sigma) \left(\frac{Q_{M-1}^{k}}{Q_{M}^{k}}(\sigma) \left(1 + \frac{Q_{M-2}^{k}}{Q_{M-1}^{k}}(\sigma) \left(1 + \dots \left(1 + \frac{Q_{2}^{k}}{Q_{3}^{k}}(\sigma) \right) \dots \right) \right) \right)$$

For $2 \le n \le M$ and $\sigma \le q_{M-1}k - cM$ where $c \in \mathbb{R}^{>0}$ a solution of $1 - \frac{1}{e^c - 1} - \frac{1}{e^c}(1 + \frac{1}{c}) \ge 0$ we have

$$\frac{Q_{n-1}^k}{Q_n^k}(\sigma) \le \left(\frac{n}{n-1}\right)^{-cM} \le \left(\frac{M}{M-1}\right)^{-cM} \le \frac{1}{e^c}.$$

It follows that

$$\frac{H_M^k}{Q_M^k}(\sigma) \le \sum_{n=1}^{\infty} \frac{1}{(e^c)^n} = \frac{1}{1 - \frac{1}{e^c}} - 1 = \frac{1}{e^c - 1}.$$

The tail $T_M^k(\sigma)$

For $\sigma \geq q_M k + c(M+1)$ we have

$$T_{M}^{k}(\sigma) = \sum_{n=M+1}^{\infty} Q_{n}^{j}(\sigma) = \sum_{n=M+1}^{\infty} \frac{\log^{k} n}{n^{\sigma}} \le \int_{M}^{\infty} \frac{\log^{k} x}{x^{\sigma}} dx$$
$$< \frac{\log^{k} M}{M^{\sigma}} \frac{M}{\sigma - 1} \left(1 + \frac{k}{(\sigma - 1)\log M - k + 1} \right)$$

With $k \ge k_M = \frac{(2M+1)c}{q_{M-1}-q_m}$ this gives

$$R_{M+1}^k(\sigma) \leq R_{M+1}^{k_M}(q_M k_M + c(M+1)) < \frac{1}{c}.$$

The head $H_M^k(\sigma)$ and the tail $T_M^k(\sigma)$

Now

$$egin{aligned} |\zeta^{(k)}(s)| &\geq Q^k_M(\sigma) - H^k_M(\sigma) - T^k_M(\sigma) \ &= Q^k_M(\sigma) \left(1 - rac{H^k_M}{Q^k_M}(\sigma) - rac{T^k_M}{Q^k_M}(\sigma)
ight) \ &> Q^k_M(\sigma) \left(1 - rac{1}{e^c - 1} - rac{1}{e^c} \left(1 + rac{1}{c}
ight)
ight) \ &\geq 0, \end{aligned}$$

Zero Free Regions

Let
$$k \in \mathbb{N}$$
 and $c \in \mathbb{R}^{>0}$ a solution of $1 - \frac{1}{e^c - 1} - \frac{1}{e^c}(1 + \frac{1}{c}) \ge 0$.
If $M \in \mathbb{N}$, $M > 3$ and

$$q_M k + (M+1)c \le q_{M-1}k - Mc$$

then $\zeta^{(k)}(s) \neq 0$ for

$$q_M k + (M+1)c \leq \sigma \leq q_{M-1}k - Mc.$$

Zero free regions

New zero free regions

Zeros of
$$\zeta'$$
, $\zeta^{(34)}$, $\zeta^{(67)}$, $\zeta^{(100)}$

Zero free regions New zero free regions

Zero-free regions of $\zeta^{(k)}$ in the *k*- σ -plane

Extending the wedges

The tips of the wedges are at $k_M = \frac{1}{2} \left((q_M + q_{M-1})k + c \right)$

М	3	4	5	6	7	8	9	10
k_M at tip of wedge	20	77	163	291	465	691	971	1313
k_M at tip of line	19	58	123	220	354	529	748	1014

Outline

Introduction

Zero free regions

- Known zero-free regions
- Finding zero free regions
- New zero free regions

3 Vertical distribution of zeros

- Approximate results
- Zero free line segments
- Locations of zeros

Chains of zeros

- Examples
- On the far right
- More examples

5 Zeros of ζ and zeros of $\zeta^{(k)}$

Vertical distribution of non-real zeros

Riemann, van Mangoldt 1905

The number of zeros of $\zeta(\sigma + it)$ with 0 < t < T is

$$N(T) = T \frac{\log T - 1 - \log 2\pi}{2\pi} + O(\log T)$$

Berndt 1970

The number of zeros of $\zeta^{(k)}(\sigma + it)$ with 0 < t < T is

$$N^k(T) = T rac{\log T - 1 - \log 4\pi}{2\pi} + O(\log T)$$

Berndt's proof

There is $\alpha \in \mathbb{R}$ such that $\zeta^{(k)}(\sigma + it) \neq 0$ for $\sigma < \alpha$. (Spira 1970). Let $\tau > 0$ such that $\zeta^{(k)}(\sigma + it) \neq 0$ for $0 < t < \tau$.

The number of zeros of $\zeta^{(k)}(\sigma + it)$ with 0 < t < T is

$$N^{k}(T) = \frac{1}{2\pi i} \int_{C} \frac{\zeta^{(k+1)}(s)}{\zeta^{(k)}(s)} ds = \frac{I_{1} + I_{2} + I_{3} + I_{4}}{2\pi i} = T \frac{\log T - 1 - \log 4\pi}{2\pi} + O(\log T)$$

Binder (Lübeck), Pauli, Saidak (UNCG)

Some zero-free points

If
$$\frac{\log^k N}{N^s}$$
 and $\frac{\log^k (N+1)}{(N+1)^s}$ dominate $\zeta^{(k)}$ and
$$\frac{\log^k N}{N^s} = \frac{\log^k (N+1)}{(N+1)^s}$$
there $\zeta^{(k)}(s) \neq 0$

then $\zeta^{(n)}(s) \neq 0$.

Real part:

Absolute value:
$$\frac{\log^k N}{N^{\sigma}} = \frac{\log^k (N+1)}{(N+1)^{\sigma}},$$

hence $\sigma = k \cdot q_N$ Real part: $\cos(t \cdot \log N) = \cos(t \cdot \log(N+1))$
 $\sin(t \cdot \log N) = \sin(t \cdot \log(N+1))$
hence $t = \frac{2m\pi}{\log(N+1) - \log(N)}$ for $m \in \mathbb{Z}$

Binder (Lübeck), Pauli, Saidak (UNCG)

Zero Free Horizontal Line Segements

Lemma

If $q_M k + (M+1) \log 3 \le \sigma \le q_{M-1}k - M \log 3$, then $\zeta^{(k)}(s) \ne 0$ for $s = \sigma + i \cdot \frac{2\pi j}{\log(M+1) - \log M}$.

Locations of zeros of $\zeta^{(k)}$

If
$$\frac{\log^k N}{N^s}$$
 and $\frac{\log^k (N+1)}{(N+1)^s}$ dominate $\zeta^{(k)}$ and
$$\frac{\log^k N}{N^s} = -\frac{\log^k (N+1)}{(N+1)^s}$$

there might be a zero of $\zeta^{(k)}$ close to s.

Absolute value:
$$\frac{\log^k N}{N^{\sigma}} = \frac{\log^k (N+1)}{(N+1)^{\sigma}},$$

hence $\sigma = k \cdot q_N$ Real part: $\cos(t \cdot \log N) = -\cos(t \cdot \log(N+1))$
 $\sin(t \cdot \log N) = -\sin(t \cdot \log(N+1))$
hence $t = \frac{(2m+1)\pi}{\log(N+1) - \log(N)}$ for $m \in \mathbb{Z}$

Binder (Lübeck), Pauli, Saidak (UNCG)

Locations of zeros of $\zeta^{(k)}$

The point \bullet is the only zero of $\frac{\log^k M}{M^s} + \frac{\log^k M+1}{M+1^s}$ inside the curve $\gamma \square$.

We have $\left|\frac{\log^k M}{M^s} + \frac{\log^k M+1}{M+1^s} - \zeta^{(k)}(s)\right| \le \left|\frac{\log^k M}{M^s} + \frac{\log^k M+1}{M+1^s}\right|$. By Rouché's Theorem $\zeta^{(k)}(s)$ has exactly one simple zero inside γ .

Number of Zeros Between Zero Free Regions

Corollary

Let $N_M^k(T)$ denote the number of zeros ρ of $\zeta^{(k)}(s)$ with $\Im(\rho) \leq T$ and $q_M k + (M+1) \log 3 \leq \Re(\rho) \leq q_{M-1}k - M \log 3$. Then, for all $j \geq 1$,

$$N_M^k\left(rac{2\pi j}{\log(M+1)-\log(M)}
ight)=j.$$

Outline

Introduction

Zero free regions

- Known zero-free regions
- Finding zero free regions
- New zero free regions

Vertical distribution of zeros

- Approximate results
- Zero free line segments
- Locations of zeros

Chains of zeros

- Examples
- On the far right
- More examples

5 Zeros of ζ and zeros of $\zeta^{(k)}$

Zeros of derivatives of ζ (Skorokhodov 2003)

Chains of zeros On t

On the far right

Zero Free Regions for $\zeta^{(100)}$, $\zeta^{(200)}$, $\zeta^{(400)}$, $\zeta^{(800)}$

Binder (Lübeck), Pauli, Saidak (UNCG)

Chains for large k

For $M \in \mathbb{N}$, $M \ge 2$ there is $K \in \mathbb{N}$ such that

$$q_{M+1}k + (M+2)c \leq q_Mk - (M+1)c$$
 for all $k \geq K$.

For each $k \ge K$ and each $j \in \mathbb{Z}$ there is exactly one zero in a rectangular region given by M, k, and j.

There exists a unique corresponding zero of $\zeta^{(k+1)}(s)$ in the rectangular region given by M, k+1, and j. Thus there is a chain of zeros

$$\zeta^{(\kappa)}(s), \zeta^{(\kappa+1)}(s), \zeta^{(\kappa+2)}(s), \ldots$$

Zeros of the 1st to 40th derivatives of ζ

Binder (Lübeck), Pauli, Saidak (UNCG)

Zeros of derivatives of ζ

34 / 39

Outline

Introduction

Zero free regions

- Known zero-free regions
- Finding zero free regions
- New zero free regions

Vertical distribution of zeros

- Approximate results
- Zero free line segments
- Locations of zeros

Chains of zeros

- Examples
- On the far right
- More examples

5 Zeros of ζ and zeros of $\zeta^{(k)}$

Zeros of ζ and zeros of $\zeta^{(k)}$

The curves s(c) given by $\zeta(s(c)) - c = 0$ for $c \in [0, 1)$

Binder (Lübeck), Pauli, Saidak (UNCG)

Zeros of ζ and zeros of $\zeta^{(k)}$

Zero free regions for $\zeta(s) - c$

Zeros of ζ and zeros of $\zeta^{(k)}$

Zeros of ζ and zeros of $\zeta^{(k)}$

Binder (Lübeck), Pauli, Saidak (UNCG)

Zeros of derivatives of ζ

38 / 39

