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1. Context coming from mass formulas.
The mass of an Q-algebra F is by definition
µ(F ) = 1/|Aut(F )|. Examples:

F = R : µ(Rr × Cs) = 1
r!s!2s

F = Qp : µ(Qpf) = 1
f

The mass of a class of Q-algebras is the sum
of the masses of one representing algebra for
each isomorphism type. For example, the class
of all unramified Qp-algebras of degree n has
total mass 1, as in the case n = 3:

µ(Qp3)+µ(Qp2Qp)+µ(QpQpQp) =
1

3
+

1

2
+

1

6
= 1.

More generally, for any tame partition τ ` n the
class of Qp-algebras with ramification partition
τ has total mass 1.

Total mass µn(Qv) of Qv-algebras of degree n:

v\n 1 2 3 4 5 6 7 8 9
∞ 1 1 .66 .47 .22 .11 .05 .02 .01
2 1 4 5 36 40 145 180 1572 1712
3 1 2 9 11 19 83 99 172 1100
5 1 2 3 5 27 31 55 82 130



Let NFn(d) be the number of degree n number

fields of absolute discriminant d, which are full

in the sense that G ∈ {An, Sn}. Some average

cardinalities |NFn(d)|:

1 1001 2001 3001
-1000 -2000 -3000 -4000 Limit

5 .000 .003 .004 .006 · · · ≈ .150 [B]
4 .018 .043 .052 .056 · · · ≈ .253 [B]
3 .154 .177 .184 .197 1

3ζ(3)
≈ .277 [DH]

2 .607 .611 .602 .613 1
ζ(2)

≈ .608

A natural local-global heuristic for n ≥ 3 is that

on average

|NFn(
∏
p
pcp)| ≈

1

2
µn(R)

∏
p
µn(Qp, pcp).

Here µn(Qp, pcp) is the total mass of Qp-algebras

of degree n and discriminant pcp. For n = 3,

4, and 5, this heuristic is exactly right in the

limit of large |d|.



What about the vertical rather than horizon-
tal direction? Let NFn(P) be the set of full
fields of degree n ramified within a given finite
set P of primes. The heuristic gives e.g. the
following predictions for |NFn({2,3,5})|.

50 100 150
n

105

1010

1015

ð

In fact, for any fixed P, the heuristic says that
|NFn(P)| is eventually zero.

However with Venkatesh we expect that “Hur-
witz number fields” form an enormous excep-
tion to the mass heuristic:

Conjecture. Suppose P contains the set of
primes dividing a finite nonabelian simple group.
Then lim sup |NFn(P)| =∞.



2. Sketch of definitions and key properties.

A Hurwitz parameter is a triple h = (G,C, ν)

where

G is a finite centerless group,
C = (C1, . . . , Cr) is a list of conjugacy classes,
ν = (ν1, . . . , νr) is a list of positive integers,
The quotient elements [Ci] generate Gab

and satisfy
∏

[Ci]
νi = 1.

A Hurwitz parameter h determines an unrami-

fied covering of complex algebraic varieties:

πh : Hurh → Confν.

Here the cover Hurh is a Hurwitz variety param-

eterizing certain covers of the complex projec-

tive line P1 of type h. The base is the variety

whose points are tuples (D1, . . . , Dr) of disjoint

divisors Di in P1, with Di consisting of νi dis-

tinct points. The map πh sends a cover to its

branch locus.



Let Gh be the set of tuples

(g1,1, . . . , g1,ν1
, . . . , gr,1, . . . , gr,νr) ∈ C

ν1
1 ×· · ·×C

νr
r

which generate G and have product 1. Then

G acts Gh by conjugation and the fiber Hurh,u
above any base point u can be identified with

Fh = Gh/G.

A canonical approximation to the degree nh =

|Fh| is

n̂h =

∏r
i=1 |Ci|

νi

|G||G′|
.

When enough sufficiently different Ci are present,

in fact nh = n̂h.

The fundamental group π1(Confν, u) can be iden-

tified with a classical braid group Brν. Under

suitable hypotheses—most crucially that G is

close to being a nonabelian simple group—the

action of Brν on Hurh,u is full, in the sense of

having image all of An or Sn.



If all the Ci are rational, then the map πh
canonically descends to a map of varieties over

Q. Fibers Hurh,u above rational points u ∈
Confν(Q) ⊂ Confν are the root-sets of Hurwitz

number algebras Fh,u. If πh is full, then Fh,u is

full for generic u, by the Hilbert irreducibility

theorem.

The cover πh has good reduction outside of

PG, the set of primes dividing |G|. Let Z[1/P]

be the set of rational numbers having denom-

inator divisible only by primes in P. Then for

u ∈ Confν(Z[1/P]) the algebra can have bad re-

duction only at primes in PG ∪ P.

The sets Confν(Z[1/PG]) can be arbitrarily big

in the way needed by the conjecture. So either

the conjecture is true or specialization to u ∈
Confν(Z[1/PG]) behaves in an extremely non-

generic way.



3. A full Hurwitz number field with Galois
group A25 and discriminant d = 256 334 530.

Take

h = (G,C, ν) = (S5, (2111,5), (4,1)),

u = (D1, D2) = ({−2,0,1,2}, {∞}).
The definition requires us to look at

g(z) = z5 + z4 + bz3 + cz2 + dz + e

with critical values {−2,0,1,2}. Explicitly, we
need to find solutions (b, c, d, e, w) ∈ C5 to

Resz(g(z)− t, g′(z)) = w(t+ 2)t(t− 1)(t− 2).

Finding these solutions takes ≈ one second.

Exactly 25 different e work. They are the roots
of an irreducible degree 25 polynomial f(x).
The Hurwitz number field

Fh,u = Q[x]/f(x)

has discriminant d = 256 334 530. Fixing h but
varying u ∈ Conf4,1(Z[1/{2,3,5}]) gives more
than ten thousand different Fh,u. All have d =
±2a3b5c and Galois group in {A24, S24, A25, S25}.



The intuitive reason that a Hurwitz number
field Fh,u = Q[x]/f(x) is special is that each
root of a defining polynomial f(x) is not just a
complex number. Rather “behind” this com-
plex number is a delicate geometric situation:
the unique covering of P1

t with a prescribed
topology.

For the five real e, the coverings P1
z → P1

t are
as follows (drawn in the real z-t plane and also
superimposed).
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In general, there are n = [Fh,u : Q] different
geometric objects, with their arithmetic coor-
dinated by Fh,u.



To get images for all 25 different e, we draw

1 2 3 4

in the t-plane. Then its preimages in the z

plane are
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F //

��
G //

��
H

��
A3 //

��
F

��

B3 //

��
I //

��
C3

��
B2 //

��
D3

��

C2 // J //D2 H //A2

E3 //

��
J //

��
B1

��
E2 //

��
C1

��

I //E1 //D1 G //A1

Actions of the standard generators σ1 (vertical
arrows), σ2 (symbols), and σ3 (horizontal ar-
rows) of the braid group Br4,1 are given above.
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4. Results and Open Problems.

A. Explicit equations for the covers Hurh →
Confν have been worked out in a broad range

of situations:

• exotic groups like SL3(3), G2(2), Sp4(3),

M12, . . . ;

• constrained ramification and large degrees

like {2,3,5} and n = 1200;

• certain sequences with G = Sd with d and

n both increasing without bound.

Further understanding geometry would allow

computations in new regimes (higher genus...,

more ramification points...)



B. Tame ramification is completely understood:
given (h, u) and a tame prime p, the partition
of n measuring p-adic ramification in Fh,u is
given by a universal braid group formula.

Wild ramification experimentally is subject to
strong upper bounds. For example, for degree
25 fields of discriminant ±2a3b5c, the locally
allowed maxima are (a, b, c) = (110,64,74).
The largest exponents occurring in the h =
(S5, (2111,5), (4,1)) family are (79,57,52). In
larger degree, the bounds are much stronger.

Open problem: get formulas for wild ramifica-
tion in terms of (h, u) and establish the upper
bounds.

C. Specialization has been observed to be near
generic to start with and become more generic
in higher degrees.

Open problem: control specialization enough
to prove the expected lim supNFn(P) =∞!


