Diophantine Equations

Michael E. Pohst
Institut für Mathematik
Technische Universität Berlin

May 24, 2013

Mordell's equation

$$
y^{2}=x^{3}+\kappa
$$

is one of the classical diophantine equations. In his famous book Mordell already carries out investigations on determining all integer solutions x, y for given $\kappa \in \mathbb{Z}$.

Mordell observed that the discriminant of the cubic polynomial

$$
t^{3}-3 x t-2 y
$$

in the variable t is

$$
\Delta:=-108 \kappa
$$

Hence, it suffices to determine all monic cubic polynomials $g(t)=t^{3}+a t^{2}+b t+c \in \mathbb{Z}[T]$ of discriminant Δ.

The case of irreducible polynomials $g(t)$

Any zero ρ in $\overline{\mathbb{Q}}$ generates a cubic extension $F=\mathbb{Q}(\rho)$. The discriminant $d(g)$ of the minimal polynomial $g(t)$ of ρ coincides with the discriminant of the equation order $\mathbb{Z}[\rho]$. We get

$$
\Delta=d_{F} \lambda^{2}
$$

for the discriminant d_{F} of F and some $\lambda \in \mathbb{Z}$. This yields a usually small - list of candidates for F.

Example I

When do a square and a cube only differ by 1 ?
This means to solve $y^{2}=x^{3} \pm 1$. In this case we have $\Delta=\mp 108$.
For $\Delta>0$ there are only two totally real cubic fields with discriminants below $108, d_{F} \in\{49,81\}$. In each case the quotient Δ / d_{F} is not an integer.

For $\Delta=-108$ there is exactly one cubic field F such that Δ / d_{F} is a square, namely $F=\mathbb{Q}(\sqrt[3]{-2})$ with $d_{F}=\Delta$. Hence, we need to determine all integers of F of index ± 1. We note that $1, \alpha=\sqrt[3]{-2}, \alpha^{2}$ is an integral basis of F.

Index form equations

For the candidates F of that list we need to test whether o_{F} contains elements α whose minimal polynomials have a discriminant $\lambda^{2} d_{F}$. Also, the trace $\operatorname{tr}(\alpha)$ must be divisible by 3 . We can generate F by adjoining an element $\rho \in o_{F}$ to \mathbb{Q} such that a \mathbb{Z}-Basis of o_{F} is of the form

$$
\omega_{1}=1, \omega_{2}=\rho, \omega_{3}=\left(\rho^{2}+A \rho+B\right) / N
$$

Let

$$
m_{\rho}(t)=t^{3}-U t^{2}+V t-W
$$

be the minimal polynomial of ρ.

Index form equations

We can assume that the candidates for α are of the form $\alpha=x \omega_{2}+y \omega_{3}$. The corresponding discriminants satisfy

$$
d(\alpha)=d(\rho)\left(x^{3}+\frac{1}{N} A_{21} x^{2} y+\frac{1}{N^{2}} A_{12} x y^{2}+\frac{1}{N^{3}} A_{03} y^{3}\right)^{2} .
$$

with $A_{21}=2 U+3 A, A_{12}=3 A^{2}+4 A u+U^{2}+V, A_{03}=$ $A(A+U)^{2}+V(A+U)-W$. We note that $d_{E} N^{2}=d(\rho)$. We set $z=N x$ and need to calculate solutions of the index form equation

$$
z^{3}+A_{21} z^{2} y+A_{12} z y^{2}+A_{03} y^{3}= \pm \lambda N^{2}
$$

This equation is a so-called Thue equation. It has only finitely many solutions $(z, y) \in \mathbb{Z}^{2}$.

Example of $F(x, y)=|\lambda|$ over \mathbb{Z}

$$
x^{3}+6112107974321507992849263 x^{2} y+
$$

$12452621296588189269900266038037428582780346546733 x y^{2}+$ 84568628808980564343951899932328789454828660147759928385569 $40143384916601 y^{3}$
$=1053316120407662664893697$

Example of Mordell's equation

The curve $y^{2}=x^{3}+1000000025$ has the solutions

$$
\begin{aligned}
(x, \pm y) \in\{ & (-1000,5) \\
& (-170,31545) \\
& (1271,55256) \\
& (2614,137337) \\
& (90000002000,27000000900000005)\}
\end{aligned}
$$

Thue equations

We discuss the computation of the solutions of an equation of the form

$$
F(x, y)=m \text { in } x, y \in \mathbb{Z}
$$

for given $m \in \mathbb{Z}$. Here, $F(x, y) \in \mathbb{Z}[x, y]$ is an irreducible homogeneous polynomial of degree $n \geq 3$.

For simplicity's sake we assume that the coefficient of the leading term x^{n} is 1 , hence $z=x$.

If $\alpha^{(1)}, \ldots, \alpha^{(n)}$ denote the zeros of $F(x, 1)$ in $\overline{\mathbb{Q}}$ then the polynomial $F(x, y)$ splits as follows:

$$
F(x, y)=\prod_{j=1}^{n}\left(x-\alpha^{(j)} y\right)
$$

Thue equations

We only consider the most difficult case in which $F(x, 1)$ is irreducible in $\mathbb{Z}[x]$.
For solutions $(x, y) \in \mathbb{Z}^{2}$ we set $\beta^{(j)}=x-\alpha^{(j)} y(1 \leq j \leq n)$. We let

$$
\left|\beta^{(i)}\right|=\min _{1 \leq j \leq n}\left|\beta^{(j)}\right| .
$$

In order to make the presentation easier we assume $i=1$ in the following.

Thue equations

Because of $\left|\beta^{(1)}\right| \leq \sqrt[n]{|m|}$ we obtain for $1<j \leq n$:

$$
\begin{aligned}
\left|\beta^{(j)}\right| & \geq\left|\beta^{(j)}-\beta^{(1)}\right|-\left|\beta^{(1)}\right| \\
& \geq\left|\alpha^{(j)}-\alpha^{(1)}\right||y|-\sqrt[n]{|m|} \\
& \geq\left|\alpha^{(j)}-\alpha^{(1)}\right||y| / 2
\end{aligned}
$$

if $|y|$ is large enough, i.e. for $|y|>2 \sqrt[n]{|m|} /\left|\alpha^{(j)}-\alpha^{(1)}\right|$. This implies

$$
\left|\alpha^{(1)}-\frac{x}{y}\right|<\frac{c_{1}}{|y|^{n}} \text { with } c_{1}=\frac{2^{n-1}|m|}{\prod_{j=2}^{n}\left|\alpha^{(j)}-\alpha^{(1)}\right|}
$$

Thue equations

What can we say about about the values $\left|\alpha^{(j)}-x / y\right|$ for $j>1$?
We start with the elementary inequality $|\log (x)|<2|x-1|$ which holds for $|x-1|<0.795$.

Then we get
$\log \left|\frac{\alpha^{(j)}-x / y}{\alpha^{(1)}-\alpha^{(j)}}\right|=\log \left|1-\frac{\alpha^{(1)}-x / y}{\alpha^{(1)}-\alpha^{(j)}}\right|<\frac{2}{\left|\alpha^{(1)}-\alpha^{(j)}\right|}\left|\alpha^{(1)}-x / y\right|$,
and consequently for sufficiently large $|y|$:

$$
\log \left|x-\alpha^{(j)} y\right|<2 \log |y|
$$

Thue's Theorem

Theorem For every $\varepsilon>0$ there exists a constant $c>0$ such that

$$
\left|\alpha^{(j)}-\frac{x}{y}\right|>\frac{c}{|y|^{0.5(n+2)+\varepsilon}}(1 \leq j \leq n) .
$$

Thue equations

The calculation of all solutions became feasible only via Baker's lower estimates for linear forms in logarithms, about 60 years after Thue's result.

We let $F=\mathbb{Q}\left(\alpha^{(1)}\right)$. By $\varepsilon_{i}(1 \leq i \leq r)$ we denote a full set of fundamental units of F. For all non-associate elements $\mu \in o_{F}$ of norm $\pm m$ and all roots of unity $\xi \in T U_{F}$ we then need to test, whether

$$
\beta=\xi \mu \varepsilon_{1}^{a_{1}} \cdots \varepsilon_{r}^{a_{r}}
$$

is a solution of the Thue equation.

Thue equations

We set $A=\max \left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$ and obtain a system of equations

$$
a_{1} \log \left|\varepsilon_{1}^{(j)}\right|+\ldots+a_{r} \log \left|\varepsilon_{r}^{(j)}\right|=\log \left|\frac{\beta^{(j)}}{\mu^{(j)}}\right| \quad\left(2 \leq j \leq r_{1}+r_{2}\right)
$$

in the variables a_{1}, \ldots, a_{r}.
We denote the corresponding matrix of coefficients by Γ and let $\Gamma^{-1}=\left(u_{k j}\right)$ with row norm c_{2}. This gives the following upper bound for A :

$$
A \leq c_{2} \max \log \left|\frac{\beta^{(j)}}{\mu^{(j)}}\right| \leq c_{3} \log |y|
$$

In view of the previous slide we can choose $c_{3}=2 c_{2}$ for sufficiently large values of $|y|$.

Example I

We recall that $r=1$ and calculate a fundamental unit $\varepsilon_{1}=1-\alpha+\alpha^{2}=3.847$. The absolute values of the differences of disfferent roots all are $\sqrt[3]{2} \sqrt{3}$. The corresponding Thue equation is $x^{3}+2 y^{3}= \pm 1$.

Any solution $\beta=x+\alpha y$ is of the form $\pm \varepsilon_{1}^{a_{1}}$ and we have $A=\left|a_{1}\right|$.
We get matrices $\Gamma=\left(\log \left|\varepsilon_{1}\right|\right)=(1.3474)$ and
$\Gamma^{-1}=\left(1 / \log \left|\varepsilon_{1}\right|\right)=(0.7422)$.
Therefore the first three constants are

$$
c_{1}=0.84, c_{2}=0.742, c_{3}=1.484
$$

Siegel's identity

For $1<k<\ell$ we divide Siegel's identity

$$
\left(\alpha^{(1)}-\alpha^{(k)}\right) \beta^{(\ell)}+\left(\alpha^{(k)}-\alpha^{(\ell)}\right) \beta^{(1)}+\left(\alpha^{(\ell)}-\alpha^{(1)}\right) \beta^{(k)}=0
$$

by the last summand on the left-hand side:

$$
\frac{\left(\alpha^{(1)}-\alpha^{(k)}\right) \beta^{(\ell)}}{\left(\alpha^{(1)}-\alpha^{(\ell)}\right) \beta^{(k)}}-1=\frac{\left(\alpha^{(\ell)}-\alpha^{(k)}\right) \beta^{(1)}}{\left(\alpha^{(1)}-\alpha^{(\ell)}\right) \beta^{(k)}} .
$$

From this we obtain an upper bound for the linear form in logarithms
$\Lambda:=|\log | \frac{\left(\alpha^{(1)}-\alpha^{(k)}\right) \mu^{(\ell)}}{\left(\alpha^{(1)}-\alpha^{(\ell)}\right) \mu^{(k)}}\left|+a_{1} \log \right| \frac{\varepsilon_{1}^{(\ell)}}{\varepsilon_{1}^{(k)}}\left|+\ldots+a_{r} \log \right| \frac{\varepsilon_{r}^{(\ell)}}{\varepsilon_{r}^{(k)}}| |$.

Siegel's identity

Using equations and estimates from above we get

$$
\Lambda<2\left|\frac{\left(\alpha^{(1)}-\alpha^{(k)}\right) \beta^{(\ell)}}{\left(\alpha^{(1)}-\alpha^{(\ell)}\right) \beta^{(k)}}-1\right|=2\left|\frac{\left(\alpha^{(\ell)}-\alpha^{(k)}\right) \beta^{(1)}}{\left(\alpha^{(1)}-\alpha^{(\ell)}\right) \beta^{(k)}}\right| \leq c_{4} \exp \left(-c_{5} A\right)
$$

with

$$
c_{4}=4 c_{1}\left|\frac{\alpha^{(k)}-\alpha^{(\ell)}}{\left(\alpha^{(1)}-\alpha^{(k)}\right)\left(\alpha^{(1)}-\alpha^{(\ell)}\right.}\right|, \quad c_{5}=\frac{n}{c_{3}} .
$$

On the other hand, Baker's method produces a lower bound of the form $\exp \left(-c_{6} \log A\right)$.

From these two bounds we derive an upper bound M for A. The latter is quite large, e.g. $>10^{18}$.

Baker's method

Let β be a non-zero algebraic number with minimal polynomial $f(x)=b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m} \in \mathbb{Z}[x]$, i.e. $\operatorname{gcd}\left\{b_{0}, \ldots, b_{m}\right\}=1$. In $\overline{\mathbb{Q}}[x]$ we have $f(x)=b_{0} \prod_{j=1}^{m}\left(x-\beta^{(j)}\right)$ with $\beta=\beta^{(1)}$.
Then

$$
h(\beta):=\frac{1}{m} \log \left(\left|b_{0}\right| \prod_{j=1}^{m} \max \left(1,\left|\beta^{(j)}\right|\right)\right)
$$

is called the absolute logarithmic height of β.

Theorem Baker/Wüstholz

Let $\alpha_{1}, \ldots, \alpha_{k}$ be non-zero algebraic numbers and $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. For $1 \leq i \leq k$ we choose a branch of the complex logarithm such that

$$
\left.\Lambda:=a_{1} \log \left(\alpha_{1}\right)+\ldots+a_{k} \log \left(\alpha_{k}\right)\right) \neq 0 .
$$

For $1 \leq i \leq k$ we set

$$
A_{i}=\max \left\{h\left(\alpha_{i}\right), \frac{1}{\left[\mathbb{Q}\left(\alpha_{i}: \mathbb{Q}\right]\right.}, \frac{\left|\log \left(\alpha_{i}\right)\right|}{\left[\mathbb{Q}\left(\alpha_{i}: \mathbb{Q}\right]\right.}\right\} .
$$

Theorem For $D:=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{k}\right]: \mathbb{Q}\right]$ and $A:=\max \left\{a_{1}, \ldots, a_{k}, e\right\}$ we have

$$
\log |\Lambda| \geq-18(k+1)!k^{k+1}(32 D)^{k+2} A_{1} \cdots A_{k} \log (A)
$$

Example I

We calculate constants

$$
c_{4}=1.54, c_{5}=2.022
$$

The height $h(\varepsilon)$ becomes 1.283 and from Baker's Theorem we obtain

$$
c_{6}:=-3.27 * 10^{8} .
$$

The inequality $-c_{6} \log (A)<\log \left(c_{4}\right)-c_{5} A$ is violated for $A>4 * 10^{9}$.

Thue equations, Bilu and Hanrot

From the system of equations

$$
a_{1} \log \left|\varepsilon_{1}^{(j)}\right|+\ldots+a_{r} \log \left|\varepsilon_{r}^{(j)}\right|=\log \left|\frac{\beta^{(j)}}{\mu^{(j)}}\right| \quad\left(2 \leq j \leq r_{1}+r_{2}\right)
$$

we get

$$
\begin{aligned}
a_{k} & =\sum_{j=1}^{r} u_{k j} \log \left|\frac{x-\alpha^{(j)} y}{\mu^{(j)}}\right| \\
& =(\log |y|) \sum_{j=1}^{r} u_{k j}+\sum_{j=1}^{r} u_{k j}\left(\log \left|\frac{\alpha^{(j)}-\frac{x}{y}}{\alpha^{(i)}-\alpha^{(j)}}\right|+\log \left|\frac{\alpha^{(i)}-\alpha^{(j)}}{\mu^{(j)}}\right|\right) .
\end{aligned}
$$

Thue equations, Bilu and Hanrot

We set
$\delta_{k}:=\sum_{j=1}^{r} u_{k j}, \nu_{k}:=\sum_{j=1}^{r} u_{k j} \log \left|\frac{\alpha^{(i)}-\alpha^{(j)}}{\mu^{(j)}}\right|, c_{6}:=2 c_{1} \sum_{j=1}^{r}\left|\frac{u_{k j}}{\alpha^{(i)}-\alpha^{(j)}}\right|$,
and the equation for a_{k} yields the inequality

$$
\left|\delta_{k} \log \right| y\left|-a_{k}+\nu_{k}\right|<c_{6} \exp \left(-c_{5} A\right) .
$$

From two such inequalities, say for conjugates k, ℓ, we eliminate $\log |y|$.

A lemma of Davenport

The result is an inequality of the form

$$
\left|a_{k} \vartheta+a_{\ell}-\delta\right|<c_{7} \exp \left(-c_{5} A\right)
$$

with $\vartheta=-\delta_{\ell} / \delta_{k}, \delta=\left(\delta_{k} \nu_{\ell}-\delta_{\ell} \nu_{k}\right) / \delta_{k}, c_{7}=c_{6}\left(\delta_{k}+\delta_{\ell}\right) / \delta_{k}$.
Then the huge bound for A can be drastically reduced.
Lemma Let M, B, q be positive integers satisfying

$$
1 \leq q \leq M B,\|q \vartheta\|<2(M B)^{-1},\|q \delta\|>3 / B .
$$

Then the previous inequality has no solutions a_{k}, a_{ℓ} with

$$
\frac{\log \left(M B^{2} c_{7}\right)}{c_{5}} \leq A \leq M
$$

Appropriate starting values are the upper bound M for A and $B=1000$. q can be detected as the denominator of a convergent of the continuous fraction expansion of ϑ.

Example of an index form equation

The Thue equation

$$
x^{3}+
$$

$$
6112107974321507992849263 * x^{2} y+
$$

$$
12452621296588189269900266038037428582780346546733 * x y^{2}+
$$ 84568628808980564343951899932328789454828 $66014775992838556940143384916601 * y^{3}$

$=1053316120407662664893697$
has no solutions.

