EXERCISES FOR CLASS GROUPS

MICHAEL E. POHST

1. Multiple choice

1. Let $\mathbf{a} = aO_F + \alpha O_F$ be an integral ideal of a number field F. Then $\mathbf{a}^2 =$ $a^2 O_F + \alpha^2 O_F$.

a) yes, b) no.

2. In $R = \mathbb{Z}[\sqrt{5}]$ the ideal norm is multiplicative.

a) yes, b) no.

3. The imaginary quadratic field $F = \mathbb{Q}(\sqrt{-5})$ has class number 1.

a) yes, b) no.

4. Let **p** be a non-zero prime ideal in O_F . Then $\mathbf{p} \cap \mathbb{N} = \{p\}$ for some prime number p.

a)yes, no.

5. There exist prime ideals in O_F containing more than one prime number.

a) yes, no.

2. Computations

1. Carry out the details of the computation of the class group of $\mathbb{Q}(\sqrt{-814})$ (compare lecture).

2. Compute class groups and unit groups of number fields with Magma (conditional/unconditional).

a) $F = \mathbb{Q}(\rho)$, ρ a zero of $x^3 - 7823$;

b) $F = \mathbb{Q}(\rho), \rho$ a zero of $x^4 - x^3 - 6x^2 - 2x + 4;$ c) $F = \mathbb{Q}(\rho), \rho$ a zero of $x^6 - 114x^4 + 48x^3 + 3249x^2 - 2736x - 19456.$

3. Let $F = \mathbb{Q}(\rho)$ for a zero of $x^3 - x - 1$. Compute a full set of non-associate solutions $\alpha \in O_F$ of $N(\alpha) = 5^2 7^2 11^2$.

4. Let $F = \mathbb{Q}(\rho)$ for a zero of $x^6 + x^3 + 1$. Use Magma to compute a full set of non-associate solutions $\alpha \in O_F$ of $|N(\alpha)| \in \{57, 58\}$.

5. Develop methods for deciding whether two given (integral) ideals

a) are equal;

b) belong to the same ideal class.

3. Proofs

1. Prove several of the statements on fractional ideals.

2. Introduce 2-element normal presentations?

3. Use the fact that the class number of $F = \mathbb{Q}(\sqrt{-5})$ is 2 to prove that $y^2 = 2x^3 - 5$ has exactly 2 integral solutions $(x, y) = (3, \pm 7)$.