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Fractional ideals I

Let R be an integral domain with quotient field F . For example, R
is an order in an algebraic number field F .

Definition Any non–zero R-module A in F for which a
non–zero element a ∈ R exists such that aA is an ideal a of R is
called a fractional ideal of R.

We denote the set of all fractional ideals of R by IR or just I .
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Fractional Ideals II

The usual non–zero ideals of R are also fractional ideals (with
denominator 1). They are called integral ideals. We list several
useful properties of fractional ideals.

I the product, the sum, and the intersection of fractional ideals
belong to I .

I More important is the so-called ring of multipliers for an
ideal A ∈ I:

[R/A] := {x ∈ F | xA ⊆ R} .

We remark that [R/A] is again a fractional ideal which equals
A−1 in case A is invertible.

I Invertible ideals A satisfy [A/A] = R.
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Fractional Ideals III

Lemma If an ideal a of R is contained in an integral invertible
ideal m then a is a multiple of m with an ideal of R, namely

a = (am−1)m .

Conversely, if the ideal a is a multiple of an ideal m of R, i.e.
a = mb for an integral ideal b, then a is contained in m.

Proof For a ⊆ m ⊆ R we get am−1 ⊆ mm−1 = R ⊆ m−1.
(The same applies in case of proper containment.)
For the second statement, we conclude via a = mb ⊆ mR = m.
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Fractional ideals IV

Corollary Integral ideals a which are properly contained in an
invertible maximal ideal m satisfy

a = (am−1)m ,

and am−1 is an ideal of R properly containing a.

If every non–zero ideal of R is invertible then every non–zero prime
ideal of R is maximal.

It is not difficult to show that R is also Noetherian and integrally
closed in that case.
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Dedekind rings I

Definition An integral domain R is called a Dedekind ring if it
has the properties

1. R is noetherian,

2. R is integrally closed,

3. in R every non–zero prime ideal is maximal.

Theorem For integral domains R the following conditions are
equivalent:

1. R is a Dedekind ring.

2. The fractional ideals of R form a group.

3. Every non–zero ideal a of R is a product of non–zero prime
ideals. (This presentation is unique up to the ordering of the
factors.)
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Ideals in OF

Any non-zero ideal of OF (and therefore every fractional ideal) has
a Z–basis of n elements. Hence, there exists a transformation
matrix T ∈ Zn×n from a basis of OF to a basis of a. We call
| detT | the norm N(a) of a. N(a) coincides with the Z-module
index of a in OF .

Lemma Let a be an integral ideal of OF and 0 6= a ∈ a. Then
there exists α ∈ a such that a is the greatest common divisor of
two principal ideals:

a = aOF + αOF .

The 2-element presentation can be normalized such that
(a, α)(b, β) = (ab, αβ).
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Ideals in OF

Lemma Any two integral ideals a,b of OF satisfy
N(ab) = N(a)N(b), i.e. the ideal norm is multiplicative.

Proof Since the considered ideals are power products of prime
ideals it suffices to show that

N

(
k∏

i=1

pmi
i

)
=

k∏
i=1

N(pi)
mi

for pairwise different non-zero prime ideals pi of OF and positive
exponents mi . We will do this in two steps.



Computation of unit and class groups II

Ideals in OF

Step 1

N

(
k∏

i=1

pmi
i

)
=

k∏
i=1

N(pmi
i )

is just a consequence of the Chinese Remainder Theorem stating
that

OE/

k∏
i=1

pmi
i

is isomorphic to the direct product

k∏
i=1

OE/pmi
i .
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Ideals of OF

Step 2
In order to prove that N(pm) = N(p)m holds for prime ideals it
suffices to show that the Z-modules OE/p and pm−1/pm are
isomorphic for m ≥ 2. We choose an element π ∈ p \ p2 and
introduce the Z–module homomorphism

ϕ : OE → pm−1/pm : x 7→ xπm−1 + pm .

The kernel of ϕ equals p. It remains to show that ϕ is also
surjective. For this we let y ∈ pm−1. Because of
πm−1OE + pm = pm−1 there exists an element z ∈ OE such that
the residue classes πm−1z + pm and y + pm coincide, hence
y = ϕ(z).
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Finiteness of the class group

We fix some notation. By IF we denote the (abelian multiplicative)
group of fractional ideals of OF . It contains a subgroup PF of
principal fractional ideals. The factor group ClF := IF/PF is called
the class group of OF , respectively F . Its order hF is said to be
the class number of F .

Lemma Every ideal class of F contains an integral ideal a
satisfying

N(a) ≤ 2n(n−1)/4

nn/2

√
|dF| =: BF .
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Proof

Let m be an ideal and mPF its corresponding ideal class. We
choose an integral ideal b in (mPF)−1. Then b has a Z-basis which
we assume to be reduced by the LLL-algorithm. Let β1 be the first
basis element of that reduced basis. By the LLL property we have

T2(β1) ≤ 2(n−1)/2(N(b)
√
|dF|)2/n .

On the other hand, the principal ideal β1oF is the product of b and
another integral ideal, say a, which belongs to (bPF)−1 = mPF.
We obtain

N(a) = N(β1oF )
N(b) = |N(β1)|

N(b) ≤
(
T2(β1)

n

)n/2
N(b)−1

≤ 2n(n−1)/4

nn/2

√
|dF | .

Remark In practice we rather use Minkowski’s bound

MF := n!
nn

(
4
π

)r2 √|dF |.
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Class group computation I

With those last results it is now easy to develop a concept for an
algorithm for computing the class group of F . We recall the
following facts on integral ideals:

I the ideal norm is multiplicative;

I every ideal is a product of prime ideals;

I every prime ideal p contains exactly one prime number p;

I the norm of p is a power pf with 1 ≤ f ≤ n.

From the last lemma we know that every ideal class has an integral
representative, say a, subject to N(a) ≤ BF. Clearly, a is a product
of prime ideals p with N(p) ≤ BF. Hence, we proceed as follows.
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Class group computation II

We generate a list L1 of prime numbers p ≤ BF . For each p ∈ L1
we decompose pOF into prime ideals. Then we obtain a list L2 of
all non–zero prime ideals of norm ≤ BF .

Theorem (Kummer) Let F = Q(ρ) be an algebraic number field
of degree n. Let f (t) ∈ Z[t] be the minimal polynomial of ρ. Let p
be a prime number not dividing the index (OF : Z[ρ]). Let
fi (t) ∈ Z[t] (1 ≤ i ≤ g) be monic such that

f (t) ≡
g∏

i=1

fi (t)êi mod pZ[t]

corresponds to a factorization of f (t) into prime polynomials in
Z/pZ[t].
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Class group computation III

Then pOF is decomposed into prime ideals as follows:

pOF =

g∏
i=1

p
e(pi|pOF)
i

subject to

pi = pOF+fi(ρ)OF, e(pi |pOF) = êi, f(pi |pOF) = deg(fi) (1 ≤ i ≤ g) .

We note that the calculation of the prime ideal decomposition of
prime numbers dividing the index (OF : Z[ρ]) is a lot more difficult.
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Class group computation IV

We assume that L2 = {p1, . . . ,pv}. L2 is usually called factor
basis. Then we need to generate sufficiently many relations
between the elements of L2. These are principal ideals γjOF which
are power products of the elements of L2, j = 1, 2, . . . , k. We then
obtain a so-called class group matrix M = (mij) ∈ Zv×k whose
columns are just the exponent vectors of the relations
γjoF =

∏v
i=1 p

mij

1 .

We remark that we get a few relations for free by decomposing
pOF with p ∈ L1 into prime ideals, for example, with Kummer’s
theorem. The number k of relations is sufficient when M is of full
rank v . Usually, we try to exhibit new relations via the basis
elements of a LLL–reduced bases of one of the prime ideals of L2,
respectively of small products of those. In this way we can also
increase the rank of M systematically.
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Example I

Let F = Q(
√
−814). Then L1 consists of all prime numbers less

than 40 = bBF c. By factoring t2 + 814 mod p for all p ∈ L1 we find

L2 = {p2, p5,1, p5,2, p11, p17,1, p17,2, p37} .

We note that 2, 11, 37 are ramified and 5 and 17 are the only
prime numbers p ∈ L1 for which pOF decomposes into two prime
ideals. From Kummer’s Theorem we obtain

p2 = 2OF +
√
−814OF ,

p5,1 = 5OF + (1 +
√
−814)OF ,

p5,2 = 5OF + (−1 +
√
−814)OF ,

p11 = 11OF +
√
−814OF ,

p17,1 = 17OF + (6 +
√
−814)OF ,

p17,2 = 17OF + (−6 +
√
−814)OF ,

p37 = 37OF +
√
−814OF

.
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Example II

The following class group matrix is immediate.

2 5 11 17 37

p2 2 0 0 0 0
p5,1 0 1 0 0 0
p5,2 0 1 0 0 0
p11 0 0 2 0 0
p17,1 0 0 0 1 0
p17,2 0 0 0 1 0
p37 0 0 0 0 2

.

Since we have 7 different prime ideals we need at least two more
relations.
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Example III

We try elements of the form m +
√
−814 and easily find

γ1 = 6 +
√
−814 of norm 850 = 2 · 52 · 17 ,

γ2 = −11 +
√
−814 of norm 935 = 5 · 11 · 17

.

We observe that γ1OF = p2p2
5,1p17, and γ2OF = p5,2p11p17.

Hence, we get two additional columns for the class group matrix
M: (1, 2, 0, 0, 1, 0, 0)tr and (0, 0, 1, 1, 1, 0, 0)tr.
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Class group computation V

Once the class group matrix is of rank v we apply Hermite column
reduction in order to transform it into an upper triangular matrix.
We call the result again M. That reduction procedure produces
new relations, but we are only interested in the corresponding
exponent vectors.

Next we can remove all rows and columns with a 1 on the
diagonal. Namely, an entry mii = 1 either means pi is principal in
case mµi = 0 (1 ≤ µ < i or – if there are non–zero entries mµi

with 1 ≤ µ < i – then pi PF is represented by

(
i−1∏
µ=1

p
mµi
µ PF

)−1)
.

This yields a reduced class group matrix of much smaller size.
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Example IV

We start by permuting the columns of M: The new order will be
(1 3 2 7 6 4 5):

M =



2 0 0 0 1 0 0
0 0 1 0 2 0 0
0 0 1 1 0 0 0
0 2 0 1 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 2


.
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Example V

We subtract columns 3 and 5 from column 4, yielding a new 4th
column (0 0 0 1 0 − 3 − 1)tr .
Then we subtract 2× the new column 4 and column 1 from
column 2 :

M =



2 0 0 −1 1 0 0
0 6 1 −3 2 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 2


.
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Example VI

Removing all ones on the diagonal we end up with only three prime
ideals p2,p5,1,p37 and a reduced class group matrix

M =

 2 0 0
0 6 0
0 0 2

 .
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Class group computation VI

At this stage we know prime ideals {p1, . . . ,pu} with u ≤ v and
relations γj OF =

∏u
i=1 p

mij

i .

Especially, we know that

I pm11
1 is a principal ideal,

I #〈p1 PF, . . . ,pi PF〉 | (m11 · . . . ·mii),

I hF |
∏u

i=1mii .
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Class group computation VII

For determining the order of p1 PF we need to test whether p
m11/q
1

is principal for all prime numbers q dividing m11.

We note that an integral ideal a is principal precisely if a 3 α
subject to a = αOF. A necessary condition for the existence of
such an element is the existence of α ∈ OF with |N(α)| = N(a).

This idea can usually only be used if the unit rank of F is small.
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Example VII

We know that p2
2, p6

5,1, p2
37 ∈ PF.

We have N(p2) = 2, N(p5,1) = 5, N(p37) = 37.

An element α = a + b
√
−814 ∈ oF has norm

|N(α)| = N(α) = a2 + 814 b2. This excludes norms
2, 125, 37, 50, 250.

We can obtain N(α) = 25 only for α = 5, but
5 oF = p5,1 p5,2 6= p1

5,1 . Therefore we get #〈p2 PF, p5,1 PF〉 = 12.
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Example VIII

If the subgroup 〈p2 HF〉 × 〈p5,1 HF〉 of the class group also
contains p37 HF then we must have an element with norm in
{37, 2 · 37, 53 · 37}.

The first two values are clearly impossible. But the element
α = 37 + 2

√
−814 has norm 53 · 37. We have α ∈ p37 and

α ∈ p5,1, hence α ∈ p3
5,1. Therefore α oF ⊆ p37p3

5,1 = p37p3
5,1 and

because of N(α) = 53 · 37 we must have equality. This tells us that
p37 PF = p3

5,1 PF.

We obtain hF = 12 and ClF ∼= C2 × C6.
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Class and unit group computations

Computing class and unit groups jointly.
Let F be an algebraic number field with unit rank r . As usual, we
choose a factor basis L = {p1, . . . ,pv}. We now consider

Φ : F× → Zv × Rr

which maps

0 6= αj ∈ F with αOF =
v∏

i=1

p
aij

i

onto the vector (a1j , ..., avj , c1 log(|α(1)|), ..., cr log(|α(r)|))tr with
constants ci = 1 for 1 ≤ i ≤ r1 and ci = 2 for i > r1. The upper
parts of those vectors correspond to the class group matrix
introduced before. If a Z–linear combination of those vectors has
all first v coordinates 0 then the corresponding power product of
the relations represents a unit.
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Class and unit group computations

Hence, having computed sufficiently many relations we may
assume that the Hermite normal form of the matrix of the
corresponding Φ–values is of the form(

A 0
C B

)
with matrices of full rank A ∈ Zv×v and B ∈ Rr×r . We easily see
that det(A) is an integral multiple of the class number hF and that
det(B) is an integral multiple of RegF .

If we can approximate hFRegF sufficiently well we see when we
have calculated sufficiently many relations and know both hF and
RegF , also yielding generating elements of the class group and of
the unit group of F .
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Analytic methods

Lemma (Bach) Assuming GRH to be true the class group of F
is generated by prime ideals p whose norms are bounded by
B = 12(log(|dF |))2.

Theorem hFRegF = 2−r1(2π)−r2w
√
|dF |

∏
p∈P

1−1/p∏
p3p 1−1/N(p) .
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Principal ideal test

Given an (integral) ideal a decide whether it is principal. If a is
indeed principal construct a generating element α with a = αOF.

1. Method: Solve a norm equation |N(x)| = N(a) for x ∈ OF .

2. Method: Search for elements 0 6= β of small T2–norm in IDa
and try to factorize βOF/a over the factor basis.

We note that the quotient of min{N(βOF/a)|0 6= β ∈ a} and
Minkowski’s upper bound MF for norms of integral ideals in each
ideal class tends to 0 for n→∞.


