Computation of unit and class groups II

Michael E. Pohst
Institut für Mathematik
Technische Universität Berlin

May 23, 2013

Fractional ideals I

Let R be an integral domain with quotient field F. For example, R is an order in an algebraic number field F.

Definition Any non-zero R-module \mathbf{A} in F for which a non-zero element $a \in R$ exists such that $a \mathbf{A}$ is an ideal a of R is called a fractional ideal of R.

We denote the set of all fractional ideals of R by I_{R} or just I.

Fractional Ideals II

The usual non-zero ideals of R are also fractional ideals (with denominator 1). They are called integral ideals. We list several useful properties of fractional ideals.

- the product, the sum, and the intersection of fractional ideals belong to I.
- More important is the so-called ring of multipliers for an ideal $\mathbf{A} \in \mathbf{I}$:

$$
[R / \mathbf{A}]:=\{\mathbf{x} \in \mathbf{F} \mid \mathbf{x} \mathbf{A} \subseteq \mathbf{R}\} .
$$

We remark that $[R / \mathbf{A}]$ is again a fractional ideal which equals \mathbf{A}^{-1} in case \mathbf{A} is invertible.

- Invertible ideals \mathbf{A} satisfy $[\mathbf{A} / \mathbf{A}]=\mathbf{R}$.

Fractional Ideals III

Lemma If an ideal a of R is contained in an integral invertible ideal \mathbf{m} then \mathbf{a} is a multiple of \mathbf{m} with an ideal of R, namely

$$
\mathbf{a}=\left(\mathbf{a m}^{-\mathbf{1}}\right) \mathbf{m}
$$

Conversely, if the ideal \mathbf{a} is a multiple of an ideal \mathbf{m} of R, i.e. $\mathbf{a}=\mathbf{m b}$ for an integral ideal \mathbf{b}, then \mathbf{a} is contained in \mathbf{m}.

Proof For $\mathbf{a} \subseteq \mathbf{m} \subseteq \mathbf{R}$ we get $\mathbf{a m}^{\mathbf{- 1}} \subseteq \mathbf{m m}^{\mathbf{1}}=\mathbf{R} \subseteq \mathbf{m}^{\mathbf{- 1}}$.
(The same applies in case of proper containment.)
For the second statement, we conclude via $\mathbf{a}=\mathbf{m b} \subseteq \mathbf{m R}=\mathbf{m}$.

Fractional ideals IV

Corollary Integral ideals a which are properly contained in an invertible maximal ideal \mathbf{m} satisfy

$$
\mathbf{a}=\left(\mathbf{a m}^{-1}\right) \mathbf{m}
$$

and $\mathbf{a m}^{\mathbf{- 1}}$ is an ideal of R properly containing \mathbf{a}.
If every non-zero ideal of R is invertible then every non-zero prime ideal of R is maximal.

It is not difficult to show that R is also Noetherian and integrally closed in that case.

Dedekind rings I

Definition An integral domain R is called a Dedekind ring if it has the properties

1. R is noetherian,
2. R is integrally closed,
3. in R every non-zero prime ideal is maximal.

Theorem For integral domains R the following conditions are equivalent:

1. R is a Dedekind ring.
2. The fractional ideals of R form a group.
3. Every non-zero ideal a of R is a product of non-zero prime ideals. (This presentation is unique up to the ordering of the factors.)

Dedekind rings I

Definition An integral domain R is called a Dedekind ring if it has the properties

1. R is noetherian,
2. R is integrally closed,
3. in R every non-zero prime ideal is maximal.

Theorem For integral domains R the following conditions are equivalent:

1. R is a Dedekind ring.
2. The fractional ideals of R form a group.
3. Every non-zero ideal a of R is a product of non-zero prime ideals. (This presentation is unique up to the ordering of the factors.)

Ideals in O_{F}

Any non-zero ideal of O_{F} (and therefore every fractional ideal) has a \mathbb{Z}-basis of n elements. Hence, there exists a transformation matrix $T \in \mathbb{Z}^{n \times n}$ from a basis of O_{F} to a basis of a. We call | det $T \mid$ the norm $N(\mathbf{a})$ of \mathbf{a}. $N(\mathbf{a})$ coincides with the \mathbb{Z}-module index of a in O_{F}.

Lemma Let a be an integral ideal of O_{F} and $0 \neq a \in \mathbf{a}$. Then there exists $\alpha \in \mathbf{a}$ such that \mathbf{a} is the greatest common divisor of two principal ideals:

$$
\mathbf{a}=\mathbf{a} \mathbf{O}_{\mathbf{F}}+\alpha \mathbf{O}_{\mathbf{F}} .
$$

The 2-element presentation can be normalized such that $(a, \alpha)(b, \beta)=(a b, \alpha \beta)$.

Ideals in O_{F}

Lemma Any two integral ideals \mathbf{a}, \mathbf{b} of O_{F} satisfy $N(\mathbf{a b})=\mathbf{N}(\mathbf{a}) \mathbf{N}(\mathbf{b})$, i.e. the ideal norm is multiplicative.

Proof Since the considered ideals are power products of prime ideals it suffices to show that

$$
N\left(\prod_{i=1}^{k} \mathbf{p}_{\mathbf{i}}^{\mathbf{m}_{\mathbf{i}}}\right)=\prod_{i=1}^{k} N\left(\mathbf{p}_{\mathbf{i}}\right)^{\mathbf{m}_{\mathbf{i}}}
$$

for pairwise different non-zero prime ideals $\mathbf{p}_{\mathbf{i}}$ of O_{F} and positive exponents m_{i}. We will do this in two steps.

Ideals in O_{F}

Step 1

$$
N\left(\prod_{i=1}^{k} \mathbf{p}_{\mathrm{i}}^{\mathbf{m}_{\mathrm{i}}}\right)=\prod_{i=1}^{k} N\left(\mathbf{p}_{\mathrm{i}}^{\mathbf{m}_{\mathbf{i}}}\right)
$$

is just a consequence of the Chinese Remainder Theorem stating that

$$
O_{E} / \prod_{i=1}^{k} \mathbf{p}_{\mathrm{i}}^{\mathbf{m}_{\mathrm{i}}}
$$

is isomorphic to the direct product

$$
\prod_{i=1}^{k} O_{E} / \mathbf{p}_{\mathbf{i}}^{\mathbf{m}_{\mathbf{i}}}
$$

Ideals of O_{F}

Step 2

In order to prove that $N\left(\mathbf{p}^{\mathbf{m}}\right)=\mathbf{N}(\mathbf{p})^{\mathbf{m}}$ holds for prime ideals it suffices to show that the \mathbb{Z}-modules O_{E} / \mathbf{p} and $\mathbf{p}^{\mathbf{m}-\mathbf{1}} / \mathbf{p}^{\mathbf{m}}$ are isomorphic for $m \geq 2$. We choose an element $\pi \in \mathbf{p} \backslash \mathbf{p}^{2}$ and introduce the \mathbb{Z}-module homomorphism

$$
\varphi: O_{E} \rightarrow \mathbf{p}^{\mathbf{m}-\mathbf{1}} / \mathbf{p}^{\mathbf{m}}: \mathbf{x} \mapsto \mathbf{x} \pi^{\mathbf{m}-\mathbf{1}}+\mathbf{p}^{\mathbf{m}}
$$

The kernel of φ equals \mathbf{p}. It remains to show that φ is also surjective. For this we let $y \in \mathbf{p}^{\mathbf{m}-\mathbf{1}}$. Because of $\pi^{m-1} O_{E}+\mathbf{p}^{\mathbf{m}}=\mathbf{p}^{\mathbf{m}-\mathbf{1}}$ there exists an element $z \in O_{E}$ such that the residue classes $\pi^{m-1} z+\mathbf{p}^{m}$ and $y+\mathbf{p}^{m}$ coincide, hence $y=\varphi(z)$.

Finiteness of the class group

We fix some notation. By I_{F} we denote the (abelian multiplicative) group of fractional ideals of O_{F}. It contains a subgroup P_{F} of principal fractional ideals. The factor group $C I_{F}:=I_{F} / P_{F}$ is called the class group of O_{F}, respectively F. Its order h_{F} is said to be the class number of F.

Lemma Every ideal class of F contains an integral ideal a satisfying

$$
N(\mathbf{a}) \leq \frac{\mathbf{2}^{\mathbf{n}(\mathbf{n}-\mathbf{1}) / 4}}{\mathbf{n}^{\mathbf{n} / \mathbf{2}}} \sqrt{\left|\mathbf{d}_{\mathbf{F}}\right|}=: \mathbf{B}_{\mathbf{F}}
$$

Proof

Let \mathbf{m} be an ideal and $\mathbf{m} \mathbf{P}_{\mathbf{F}}$ its corresponding ideal class. We choose an integral ideal \mathbf{b} in $\left(\mathbf{m} \mathbf{P}_{\mathbf{F}}\right)^{\mathbf{- 1}}$. Then \mathbf{b} has a \mathbb{Z}-basis which we assume to be reduced by the $L L L$-algorithm. Let β_{1} be the first basis element of that reduced basis. By the LLL property we have

$$
T_{2}\left(\beta_{1}\right) \leq 2^{(n-1) / 2}\left(N(\mathbf{b}) \sqrt{\left|\mathbf{d}_{\mathbf{F}}\right|}\right)^{2 / \mathbf{n}} .
$$

On the other hand, the principal ideal $\beta_{1} O_{F}$ is the product of \mathbf{b} and another integral ideal, say \mathbf{a}, which belongs to $\left(\mathbf{b P}_{\mathbf{F}}\right)^{\mathbf{- 1}}=\mathbf{m} \mathbf{P}_{\mathbf{F}}$. We obtain

$$
\begin{aligned}
N(\mathbf{a}) & =\frac{N\left(\beta_{1} O_{F}\right)}{N(\mathbf{b})}=\frac{\left|N\left(\beta_{1}\right)\right|}{N(\mathbf{b})} \leq\left(\frac{T_{2}\left(\beta_{1}\right)}{n}\right)^{n / 2} N(\mathbf{b})^{-\mathbf{1}} \\
& \leq \frac{2^{n(n-1) / 4}}{n^{n / 2}} \sqrt{\left|d_{F}\right|} .
\end{aligned}
$$

Remark In practice we rather use Minkowski's bound $M_{F}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|d_{F}\right|}$.

Class group computation I

With those last results it is now easy to develop a concept for an algorithm for computing the class group of F. We recall the following facts on integral ideals:

- the ideal norm is multiplicative;
- every ideal is a product of prime ideals;
- every prime ideal \mathbf{p} contains exactly one prime number p;
- the norm of \mathbf{p} is a power p^{f} with $1 \leq f \leq n$.

From the last lemma we know that every ideal class has an integral representative, say \mathbf{a}, subject to $N(\mathbf{a}) \leq \mathbf{B}_{\mathbf{F}}$. Clearly, \mathbf{a} is a product of prime ideals \mathbf{p} with $N(\mathbf{p}) \leq \mathbf{B}_{\mathbf{F}}$. Hence, we proceed as follows.

Class group computation II

We generate a list L_{1} of prime numbers $p \leq B_{F}$. For each $p \in L_{1}$ we decompose $p O_{F}$ into prime ideals. Then we obtain a list L_{2} of all non-zero prime ideals of norm $\leq B_{F}$.

Theorem (Kummer) Let $F=\mathbb{Q}(\rho)$ be an algebraic number field of degree n. Let $f(t) \in \mathbb{Z}[t]$ be the minimal polynomial of ρ. Let p be a prime number not dividing the index $\left(O_{F}: \mathbb{Z}[\rho]\right)$. Let $f_{i}(t) \in \mathbb{Z}[t](1 \leq i \leq g)$ be monic such that

$$
f(t) \equiv \prod_{i=1}^{g} f_{i}(t)^{\hat{e}_{i}} \bmod p \mathbb{Z}[t]
$$

corresponds to a factorization of $f(t)$ into prime polynomials in $\mathbb{Z} / p \mathbb{Z}[t]$.

Class group computation III

Then $p O_{F}$ is decomposed into prime ideals as follows:

$$
p O_{F}=\prod_{i=1}^{g} \mathbf{p}_{\mathbf{i}}^{\mathbf{e}\left(\mathbf{p}_{\mathbf{i}} \mathbf{p O}_{\mathbf{F}}\right)}
$$

subject to
$\mathbf{p}_{\mathbf{i}}=\mathbf{p} \mathbf{O}_{\mathbf{F}}+\mathbf{f}_{\mathbf{i}}(\rho) \mathbf{O}_{\mathbf{F}}, \mathbf{e}\left(\mathbf{p}_{\mathbf{i}} \mid \mathbf{p} \mathbf{O}_{\mathbf{F}}\right)=\hat{\mathbf{e}}_{\mathbf{i}}, \mathbf{f}\left(\mathbf{p}_{\mathbf{i}} \mid \mathbf{p} \mathbf{O}_{\mathbf{F}}\right)=\operatorname{deg}\left(\mathbf{f}_{\mathbf{i}}\right)(\mathbf{1} \leq \mathbf{i} \leq \mathbf{g})$.

We note that the calculation of the prime ideal decomposition of prime numbers dividing the index $\left(O_{F}: \mathbb{Z}[\rho]\right)$ is a lot more difficult.

Class group computation IV

We assume that $L_{2}=\left\{\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{v}}\right\} . L_{2}$ is usually called factor basis. Then we need to generate sufficiently many relations between the elements of L_{2}. These are principal ideals $\gamma_{j} O_{F}$ which are power products of the elements of $L_{2}, j=1,2, \ldots, k$. We then obtain a so-called class group matrix $M=\left(m_{i j}\right) \in \mathbb{Z}^{v \times k}$ whose columns are just the exponent vectors of the relations $\gamma_{j} o_{F}=\prod_{i=1}^{v} \mathbf{p}_{1}^{\mathbf{m}_{\mathrm{ij}}}$.
We remark that we get a few relations for free by decomposing $p O_{F}$ with $p \in L_{1}$ into prime ideals, for example, with Kummer's theorem. The number k of relations is sufficient when M is of full rank v. Usually, we try to exhibit new relations via the basis elements of a $L L L-$ reduced bases of one of the prime ideals of L_{2}, respectively of small products of those. In this way we can also increase the rank of M systematically.

Example I

Let $F=\mathbb{Q}(\sqrt{-814})$. Then L_{1} consists of all prime numbers less than $40=\left\lfloor B_{F}\right\rfloor$. By factoring $t^{2}+814 \bmod p$ for all $p \in L_{1}$ we find

$$
L_{2}=\left\{\mathbf{p}_{2}, \mathbf{p}_{5,1}, \mathbf{p}_{5,2}, \mathbf{p}_{11}, \mathbf{p}_{17,1}, \mathbf{p}_{17,2}, \mathbf{p}_{37}\right\}
$$

We note that $2,11,37$ are ramified and 5 and 17 are the only prime numbers $p \in L_{1}$ for which $p O_{F}$ decomposes into two prime ideals. From Kummer's Theorem we obtain

$$
\begin{aligned}
& \mathbf{p}_{2}=2 O_{F}+\sqrt{-814} O_{F}, \\
& \mathbf{p}_{5,1}=5 O_{F}+(1+\sqrt{-814}) O_{F}, \\
& \mathbf{p}_{5,2}=5 O_{F}+(-1+\sqrt{-814}) O_{F}, \\
& \mathbf{p}_{11}=11 O_{F}+\sqrt{-814} O_{F}, \\
& \mathbf{p}_{17,1}=17 O_{F}+(6+\sqrt{-814}) O_{F}, \\
& \mathbf{p}_{17,2}=17 O_{F}+(-6+\sqrt{-814}) O_{F}, \\
& \mathbf{p}_{37}=37 O_{F}+\sqrt{-814} O_{F}
\end{aligned}
$$

Example II

The following class group matrix is immediate.

	2	5	11	17	37
$\mathbf{p}_{\mathbf{2}}$	2	0	0	0	0
$\mathbf{p}_{\mathbf{5}, \mathbf{1}}$	0	1	0	0	0
$\mathbf{p}_{\mathbf{5}, \mathbf{2}}$	0	1	0	0	0
$\mathbf{p}_{\mathbf{1 1}}$	0	0	2	0	0
$\mathbf{p}_{\mathbf{1 7 , 1}}$	0	0	0	1	0
$\mathbf{p}_{\mathbf{1 7}, \mathbf{2}}$	0	0	0	1	0
$\mathbf{p}_{\mathbf{3 7}}$	0	0	0	0	2

Since we have 7 different prime ideals we need at least two more relations.

Example III

We try elements of the form $m+\sqrt{-814}$ and easily find

$$
\begin{aligned}
& \gamma_{1}=6+\sqrt{-814} \quad \begin{array}{l}
\text { of norm } \quad 850=2 \cdot 5^{2} \cdot 17 \\
\gamma_{2}=-11+\sqrt{-814} \\
\text { of norm } \\
935=5 \cdot 11 \cdot 17
\end{array}, ~
\end{aligned}
$$

We observe that $\gamma_{1} O_{F}=\mathbf{p}_{2} \mathbf{p}_{5,1}^{2} \mathbf{p}_{17}$, and $\gamma_{2} O_{F}=\mathbf{p}_{\mathbf{5}, 2} \mathbf{p}_{\mathbf{1 1}} \mathbf{p}_{17}$.
Hence, we get two additional columns for the class group matrix $M:(1,2,0,0,1,0,0)^{\mathrm{tr}}$ and $(0,0,1,1,1,0,0)^{\mathrm{tr}}$.

Class group computation V

Once the class group matrix is of rank v we apply Hermite column reduction in order to transform it into an upper triangular matrix. We call the result again M. That reduction procedure produces new relations, but we are only interested in the corresponding exponent vectors.

Next we can remove all rows and columns with a 1 on the diagonal. Namely, an entry $m_{i i}=1$ either means $\mathbf{p}_{\mathbf{i}}$ is principal in case $m_{\mu i}=0 \quad\left(1 \leq \mu<i\right.$ or - if there are non-zero entries $m_{\mu i}$ with $1 \leq \mu<i$ - then $\mathbf{p}_{\mathbf{i}} \mathbf{P}_{\mathbf{F}}$ is represented by $\left(\prod_{\mu=1}^{i-1} \mathbf{p}_{\mu}^{\mathbf{m}_{\mu i}} \mathbf{P}_{\mathbf{F}}\right)^{-1)}$.
This yields a reduced class group matrix of much smaller size.

Example IV

We start by permuting the columns of M : The new order will be (1327645):

$$
M=\left(\begin{array}{lllllll}
2 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Example V

We subtract columns 3 and 5 from column 4, yielding a new 4th column (00010-3-1) ${ }^{\text {tr }}$.
Then we subtract $2 \times$ the new column 4 and column 1 from column 2:

$$
M=\left(\begin{array}{ccccccc}
2 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 6 & 1 & -3 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Example VI

Removing all ones on the diagonal we end up with only three prime ideals $\mathbf{p}_{\mathbf{2}}, \mathbf{p}_{5,1}, \mathbf{p}_{37}$ and a reduced class group matrix

$$
M=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Class group computation VI

At this stage we know prime ideals $\left\{\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{u}}\right\}$ with $u \leq v$ and relations $\gamma_{j} O_{F}=\prod_{i=1}^{u} \mathbf{p}_{\mathbf{i}}^{\mathbf{m}_{\mathrm{ij}}}$.

Especially, we know that

- $\mathbf{p}_{1}^{\mathrm{m}_{11}}$ is a principal ideal,
- $\#\left\langle\mathbf{p}_{\mathbf{1}} \mathbf{P}_{\mathbf{F}}, \ldots, \mathbf{p}_{\mathbf{i}} \mathbf{P}_{\mathbf{F}}\right\rangle \mid\left(\mathbf{m}_{11} \cdot \ldots \cdot \mathbf{m}_{\mathbf{i i}}\right)$,
- $h_{F} \mid \prod_{i=1}^{u} m_{i i}$.

Class group computation VII

For determining the order of $\mathbf{p}_{1} \mathbf{P}_{\mathbf{F}}$ we need to test whether $\mathbf{p}_{1}^{\mathbf{m}_{11} / \mathbf{q}}$ is principal for all prime numbers q dividing m_{11}.

We note that an integral ideal \mathbf{a} is principal precisely if $\mathbf{a} \ni \alpha$ subject to $\mathbf{a}=\alpha \mathbf{O}_{\mathbf{F}}$. A necessary condition for the existence of such an element is the existence of $\alpha \in O_{F}$ with $|N(\alpha)|=N(\mathbf{a})$.

This idea can usually only be used if the unit rank of F is small.

Example VII

We know that $\mathbf{p}_{2}^{2}, \mathbf{p}_{5,1}^{6}, \mathbf{p}_{37}^{2} \in \mathbf{P}_{\mathbf{F}}$.
We have $N\left(\mathbf{p}_{2}\right)=\mathbf{2}, \mathbf{N}\left(\mathbf{p}_{5,1}\right)=\mathbf{5}, \mathbf{N}\left(\mathbf{p}_{37}\right)=37$.
An element $\alpha=a+b \sqrt{-814} \in o_{F}$ has norm $|N(\alpha)|=N(\alpha)=a^{2}+814 b^{2}$. This excludes norms
2, 125, 37, 50, 250.
We can obtain $N(\alpha)=25$ only for $\alpha=5$, but
$5 o_{F}=\mathbf{p}_{\mathbf{5}, \mathbf{1}} \mathbf{p}_{\mathbf{5}, \mathbf{2}} \neq \mathbf{p}_{\mathbf{5}, \mathbf{1}}^{\mathbf{1}}$. Therefore we get $\#\left\langle\mathbf{p}_{\mathbf{2}} \mathbf{P}_{\mathbf{F}}, \mathbf{p}_{\mathbf{5}, \mathbf{1}} \mathbf{P}_{\mathbf{F}}\right\rangle=\mathbf{1 2}$.

Example VIII

If the subgroup $\left\langle\mathbf{p}_{\mathbf{2}} \mathbf{H}_{\mathbf{F}}\right\rangle \times\left\langle\mathbf{p}_{\mathbf{5}, \mathbf{1}} \mathbf{H}_{\mathbf{F}}\right\rangle$ of the class group also contains $\mathbf{p}_{\mathbf{3 7}} \mathbf{H}_{\mathbf{F}}$ then we must have an element with norm in $\left\{37,2 \cdot 37,5^{3} \cdot 37\right\}$.

The first two values are clearly impossible. But the element $\alpha=37+2 \sqrt{-814}$ has norm $5^{3} \cdot 37$. We have $\alpha \in \mathbf{p}_{37}$ and $\alpha \in \mathbf{p}_{5,1}$, hence $\alpha \in \mathbf{p}_{5,1}^{3}$. Therefore $\alpha O_{F} \subseteq \mathbf{p}_{37} \mathbf{p}_{5,1}^{3}=\mathbf{p}_{37} \mathbf{p}_{5,1}^{3}$ and because of $N(\alpha)=5^{3} .37$ we must have equality. This tells us that $\mathbf{p}_{37} \mathbf{P}_{\mathbf{F}}=\mathbf{p}_{5,1}^{3} \mathbf{P}_{\mathbf{F}}$.

We obtain $h_{F}=12$ and $C l_{F} \cong C_{2} \times C_{6}$.

Class and unit group computations

Computing class and unit groups jointly.
Let F be an algebraic number field with unit rank r. As usual, we choose a factor basis $L=\left\{\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{v}}\right\}$. We now consider

$$
\Phi: F^{\times} \rightarrow \mathbb{Z}^{v} \times \mathbb{R}^{r}
$$

which maps

$$
0 \neq \alpha_{j} \in F \text { with } \alpha O_{F}=\prod_{i=1}^{v} \mathbf{p}_{i}^{\mathrm{a}_{\mathrm{ij}}}
$$

onto the vector $\left(a_{1 j}, \ldots, a_{v j}, c_{1} \log \left(\left|\alpha^{(1)}\right|\right), \ldots, c_{r} \log \left(\left|\alpha^{(r)}\right|\right)\right)^{\mathrm{tr}}$ with constants $c_{i}=1$ for $1 \leq i \leq r_{1}$ and $c_{i}=2$ for $i>r_{1}$. The upper parts of those vectors correspond to the class group matrix introduced before. If a \mathbb{Z}-linear combination of those vectors has all first v coordinates 0 then the corresponding power product of the relations represents a unit.

Class and unit group computations

Hence, having computed sufficiently many relations we may assume that the Hermite normal form of the matrix of the corresponding Φ-values is of the form

$$
\left(\begin{array}{c|c}
A & \mathbf{0} \\
\hline C & B
\end{array}\right)
$$

with matrices of full rank $A \in \mathbb{Z}^{v \times v}$ and $B \in \mathbb{R}^{r \times r}$. We easily see that $\operatorname{det}(A)$ is an integral multiple of the class number h_{F} and that $\operatorname{det}(B)$ is an integral multiple of Reg_{F}.

If we can approximate $h_{F} \operatorname{Reg}_{F}$ sufficiently well we see when we have calculated sufficiently many relations and know both h_{F} and Reg_{F}, also yielding generating elements of the class group and of the unit group of F.

Analytic methods

Lemma (Bach) Assuming GRH to be true the class group of F is generated by prime ideals \mathbf{p} whose norms are bounded by $B=12\left(\log \left(\left|d_{F}\right|\right)\right)^{2}$.

Theorem $h_{F} \operatorname{Reg}_{F}=2^{-r_{1}}(2 \pi)^{-r_{2}} w \sqrt{\left|d_{F}\right|} \prod_{p \in \mathbb{P}} \frac{1-1 / p}{\prod_{\mathbf{p} \ni \boldsymbol{p}}^{1-1 / N(\mathbf{p})}}$.

Principal ideal test

Given an (integral) ideal a decide whether it is principal. If \mathbf{a} is indeed principal construct a generating element α with $\mathbf{a}=\alpha \mathbf{O}_{\mathbf{F}}$.

1. Method: Solve a norm equation $|N(x)|=N(\mathbf{a})$ for $x \in O_{F}$.
2. Method: Search for elements $0 \neq \beta$ of small T_{2}-norm in $I D a$ and try to factorize $\beta O_{F} /$ a over the factor basis.

We note that the quotient of $\min \left\{N\left(\beta O_{F} / \mathbf{a}\right) \mid \mathbf{0} \neq \beta \in \mathbf{a}\right\}$ and Minkowski's upper bound M_{F} for norms of integral ideals in each ideal class tends to 0 for $n \rightarrow \infty$.

