EXERCISES FOR UNITS

MICHAEL E. POHST

1. Multiple choice

1. An integer α of a number field F is a root of unity precisely if $T_{2}(\alpha)=n$.
a) yes,
b) no.
2. Number fields F with $r_{1}>0$ satisfy $T U_{F}=\{ \pm 1\}$.
a) yes, b) no.
3. Let F be an imaginary quadratic Field, i.e. $2=n=2 r_{2}$. Then $T U_{F}$ has order 2.
a) yes,
b) no.
4. Let F be an algebraic number field of order $n=r_{1}+2 r_{2}$. The rank r of the unit group is 1 for
a) totally complex quartic fields $\left(r_{2}=2\right)$, b) cyclic (=Galois) cubic fields, c) imaginary quadratic fields $\left(d_{F}<0\right)$.
5. Let $F=\mathbb{Q}(\sqrt{m})$ be a real quadratic number field for some square-free positive integer $m \equiv 0 \bmod 3$. Then the norm of the fundamental unit of F is negative.
a) yes,
b) no.

2. Computations

1. Caculate a lower regulator bound for $F=\mathbb{Q}(\sqrt{m})$ with $m \in\{9930,9931,9933\}$ which is larger than one fifth of the actual regulator, 28.9, 189.1, 5.0 respectively. How large do you need to choose K ?
2. Let $F=\mathbb{Q}(\rho), \rho$ a zero of $x^{4}+x^{3}-3 x^{2}-x+1$. Compute a system of fundamental units for o_{F}. What is the regulator of F ?
3. Let $F=\mathbb{Q}(\rho)$ for a zero of $x^{3}-x-1$. Compute a full set of non-associate solutions of $N(\alpha)=5^{2} 7^{2} 11^{2}$.

3. Proofs

1. Let p be an odd prime number . Set $\zeta=e^{2 \pi i / p}$ and $R=\mathbb{Z}[\zeta]$. Let $\varepsilon \in U(R)$. Prove:
a) $\varepsilon / \bar{\varepsilon}$ belongs to $U(R)$. (Overlining denotes complex conjugation.)
b) $\varepsilon / \bar{\varepsilon}$ equals ζ^{k} for an exponent $k \in\{1, \ldots, p\}$.
c) Every element of $U(R)$ is the product of an element of $U(R) \cap \mathbb{R}$ and a root of unity.
d) $U(R)=U\left(\mathbb{Z}\left[\zeta+\zeta^{-1}\right]\right) \times\langle\zeta\rangle$.
2. Let ζ be a zero of $x^{4}+1$ and $F=\mathbb{Q}(\zeta)$. Determine the unit group and the regulator of F. (Hint: What is the unique real quadratic subfield of F ?)
