Computation of unit groups and class groups I

Michael E. Pohst
Institut für Mathematik
Technische Universität Berlin

June 22, 2013

Units

Let F be an algebraic number field of degree $n=r_{1}+2 r_{2}$. A unit of an order R of F is an invertible element ε of R. The group of units of R will be denoted by $U(R)$.

1. $\alpha \in R$ belongs to $U(R)$ precisely if $N(\alpha) \in U(\mathbb{Z})=\{ \pm 1\}$. 2. R contains only a finite number of non-associate elements of bounded norm. (Elements $\alpha, \beta \in R$ are called associate if α / β and β / α belong to R.)
2. For any constant $C>0$ there exist only finitely many elements
$\alpha \in R$ such that the absolute values of all conjugates of α are bounded by C.

Units

Let F be an algebraic number field of degree $n=r_{1}+2 r_{2}$. A unit of an order R of F is an invertible element ε of R. The group of units of R will be denoted by $U(R)$.

1. $\alpha \in R$ belongs to $U(R)$ precisely if $N(\alpha) \in U(\mathbb{Z})=\{ \pm 1\}$.
2. R contains only a finite number of non-associate elements of bounded norm. (Elements $\alpha, \beta \in R$ are called associate if α / β and β / α belong to R.)
3. For any constant $C>0$ there exist only finitely many elements
$\alpha \in R$ such that the absolute values of all conjugates of α are bounded by C.

Roots of unity

An element $\xi \in R$ is a root of unity precisely if all conjugates of ξ have absolute value 1 .

All roots of unity of R form a finite cyclic subgroup which we denote by $T U(R)$, in case of $R=o_{F}$ by $T U_{F}$.

A generator of the group $T U(R)$ of order w will be denoted by ζ (primitive w-th root of unity).

For imaginary quadratic extensions $F\left(2=n=2 r_{2}\right)$ we have $U(R)=T U(R)$.

Structure of the unit group

The conjugates of $x \in F$ are denoted by $x^{(1)}, \ldots, x^{(n)}$. They are ordered in the usual way such that $x^{(j)} \in \mathbb{R}$ for $1 \leq j \leq r_{1}$, $x^{(j)} \in \mathbb{C} \backslash \mathbb{R}$ for $r_{1}<j \leq n$ subject to $x^{\left(r_{1}+r_{2}+j\right)}=x^{\left(\overline{r_{1}}+j\right)}$ for $1 \leq j \leq r_{2}$.

Theorem (Dirichlet) The unit group $U(R)$ of R is a direct product of its torsion subgroup $T U(R)$ with $r=r_{1}+r_{2}-1$ infinite cyclic groups:

$$
U(R)=T U(R) \times\left\langle E_{1}\right\rangle \cdots \times\left\langle E_{r}\right\rangle \cong C_{w} \mathbb{Z}^{r}
$$

The generators E_{1}, \ldots, E_{r} form a system of fundamental units.

Structure of the unit group

The conjugates of $x \in F$ are denoted by $x^{(1)}, \ldots, x^{(n)}$. They are ordered in the usual way such that $x^{(j)} \in \mathbb{R}$ for $1 \leq j \leq r_{1}$, $x^{(j)} \in \mathbb{C} \backslash \mathbb{R}$ for $r_{1}<j \leq n$ subject to $x^{\left(r_{1}+r_{2}+j\right)}=x^{\left(\overline{r_{1}+j}\right)}$ for $1 \leq j \leq r_{2}$.

Theorem (Dirichlet) The unit group $U(R)$ of R is a direct product of its torsion subgroup $T U(R)$ with $r=r_{1}+r_{2}-1$ infinite cyclic groups:

$$
U(R)=T U(R) \times\left\langle E_{1}\right\rangle \cdots \times\left\langle E_{r}\right\rangle \cong C_{w} \mathbb{Z}^{r} .
$$

The generators E_{1}, \ldots, E_{r} form a system of fundamental units.

Regulator

We consider the logarithmic map

$$
L: F^{\times} \rightarrow \mathbb{R}^{r}: x \mapsto\left(c_{1} \log \left|x^{(1)}\right|, \ldots, c_{r} \log \left|x^{(r)}\right|\right),
$$

with constants $c_{j}=1$ for $1 \leq j \leq r_{1}$ and $c_{j}=2$ for $j>r_{1}$.
The image of the unit group $L(U(R))$ is a lattice of determinant

$$
\operatorname{Reg}_{R}:=\left|\operatorname{det}\left(\begin{array}{c}
L\left(E_{1}\right) \\
\cdot \\
\cdot \\
\cdot \\
L\left(E_{r}\right)
\end{array}\right)\right|=: d(L(U(R))) .
$$

Reg_{R} is called the regulator of the order R.
In case $R=o_{F}$ we write Reg_{F} instead of Reg_{R}.

Independent units

Units $\varepsilon_{1}, \ldots, \varepsilon_{k}$ are called independent, if a relation

$$
\varepsilon_{1}^{m_{1}} \cdots \varepsilon_{k}^{m_{k}}=1\left(m_{i} \in \mathbb{Z}\right)
$$

implies $m_{1}=\ldots=m_{k}=0$. Otherwise they are said to be dependent.

Remark $\varepsilon_{1}, \ldots, \varepsilon_{k}$ are independent if and only if $L\left(\varepsilon_{1}\right), \ldots$, $L\left(\varepsilon_{k}\right)$ are \mathbb{R}-linearly independent.

The computation of fundamental units is usually done by calculating a maximal system of independent units which generates a subgroup of $U(R)$ of small index. Then this subgroup is gradually enlarged to all of $U(R)$.

Independent units

We choose suitable sets of conjugates
$I=\left\{i_{1}, \ldots, i_{\mu}\right\} \subset\left\{1, \ldots, r_{1}+r_{2}\right\}$.
By \tilde{I} we denote the subset of $\{1, \ldots, n\}$ containing i_{1}, \ldots, i_{μ} and also all $i_{\nu}+r_{2}$ in case $i_{\nu}>r_{1}$ belongs to l.

We set

$$
\# \tilde{I}=\tilde{\mu}, J=\left\{1, \ldots, r_{1}+r_{2}\right\} \backslash I, \tilde{J}=\{1, \ldots, n\} \backslash \tilde{I} .
$$

Independent units

Then we calculate a sequence of elements $\left\{\beta_{l, k}\right\}_{k \in \mathbb{Z} \geq 0}$ and modules $M_{l, k}$ with the following properties:

$$
\begin{aligned}
& \beta_{l, 0}=1, M_{l, 0}:=R \\
& \beta_{l, k+1} \in M_{l, k}, M_{l, k+1}:=\frac{1}{\beta_{l, k+1}} M_{l, k} \\
& \left|\beta_{l, k+1}^{(j)}\right|<1 \quad \forall j \in \tilde{I},\left|\beta_{l, k+1}(j)\right| \geq 1 \quad \forall j \in \tilde{J}, \\
& k+1 \\
& \prod_{i=0}^{k+1}\left|N\left(\beta_{l, i}\right)\right| \leq \tilde{C} \\
& \quad \text { with a fixed constant } \tilde{C}>0 .
\end{aligned}
$$

Independent units

Next we compute $\beta_{I, k+1} \in M_{I, k}$.
We choose $d \geq 1$ sufficiently large, for example $d \geq 2^{n(n-1) / 2}|d(R)|$. Then we set

$$
\lambda_{j}=d \text { for } j \in \tilde{J}, \lambda_{j}=d^{1-n / \tilde{\mu}} \text { for } j \in \tilde{I} .
$$

For a \mathbb{Z}-Basis $\omega_{1}, \ldots, \omega_{n}$ of $M_{l, k}$ we define a positive definite quadratic form with attached weights:

$$
T_{2, \lambda}(\mathbf{x})=\sum_{j=1}^{n} \lambda_{j}^{-2}\left|\sum_{i=1}^{n} x_{i} \omega_{i}^{(j)}\right|^{2} .
$$

$\beta_{l, k+1}$ is chosen as first basis element of a basis of $M_{l, k}$ which is LLL-reduced with respect to $T_{2, \lambda}$.

Independent units

Upon detecting modules $M_{I, \mu}=M_{I, \nu}$ with indices $\mu>\nu$ we obtain a unit

$$
\varepsilon=\prod_{k=\nu+1}^{\mu} \beta_{I, k} .
$$

with

$$
\left|\varepsilon^{(j)}\right|<1 \forall j \in \tilde{I} \text { and }\left|\varepsilon^{(j)}\right| \geq 1 \forall j \in \tilde{J} .
$$

These ideas can be made more efficient by using factor bases and relations, similar to class group computations.

Independent units

A factor basis is a set \mathcal{B} of prime ideals of R, say,

$$
\mathcal{B}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{v}\right\}
$$

By relations we denote elements α_{i} of $R($ or $F)$ for which the principal ideals $\alpha_{i} R$ are power products of the elements of \mathcal{B} :

$$
\alpha_{i} R=\prod_{j=1}^{w} \mathbf{p}_{j}^{a_{i j}}
$$

Independent units

Hence, a relation is in $1-1$-correspondence with an exponent vector $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i v}\right)$. Having found sufficiently many relations

$$
\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}
$$

e.g. $k>v$, we obtain non-trivial linear presentations

$$
\sum_{\mu=1}^{k} m_{\mu} \mathbf{a}_{\mu}=\mathbf{0} \quad\left(\mathbf{m}_{\mu} \in \mathbb{Z}\right)
$$

hence, a unit

$$
\varepsilon=\prod_{\mu=1}^{k} \alpha_{\mu}^{m_{\mu}}
$$

of R.

Independent units

Clearly, we are in need of a method for proving the dependence/independence of the calculated units.

Theorem (Dobrowolsky) An element $\alpha \in o_{F}$ is either a root of unity or there exists a conjugate $\alpha^{(j)}$ of α subject to

$$
\left|\alpha^{(j)}\right|>1+\frac{1}{6} \frac{\log n}{n^{2}} .
$$

Corollary 1 A unit $\varepsilon \in o_{F}$ is either a root of unity or its image in logarithmic space satisfies

$$
\|L(\varepsilon)\|_{2}>\frac{21}{128} \frac{\log n}{n^{2}} .
$$

Calculation of fundamental units

Corollary 2 If F is totally real then $\alpha \in o_{F}$ is either of the form $\cos q \pi(q \in \mathbb{Q})$ or it has a conjugate $\alpha^{(j)}$ subject to

$$
\left|\alpha^{(j)}\right|>2+\frac{1}{1152} \frac{\log ^{2} 2 n}{n^{4}} .
$$

At this stage we assume that we know $T U(R)$ as well as r independent units $\varepsilon_{1}, \ldots, \varepsilon_{r}$ of R. If we know an upper bound for the index of

$$
U:=\left\langle T U(R), \varepsilon_{1}, \ldots, \varepsilon_{r}\right\rangle
$$

in the full unit group $U(R)$ then there are well known methods for enlarging U to $U(R)$.

That index is easily seen to be

$$
(U(R): U)=\frac{d(L(U))}{d(L(U(R)))} .
$$

Regulator bounds I

Since $d(L(U))$ can be explicitly calculated it suffices to determine a lower bound for the regulator $d(L(U(R)))=\operatorname{Reg}_{R}$ in order to obtain an upper bound for that index.

This estimate is reasonably good for $n \geq 6$ and for small discriminants. The values for γ lie in the interval $] 0,1[$. (Zimmert 1981)

Regulator bounds I

Since $d(L(U))$ can be explicitly calculated it suffices to determine a lower bound for the regulator $d(L(U(R)))=\operatorname{Reg}_{R}$ in order to obtain an upper bound for that index.

$$
\begin{aligned}
\operatorname{Reg}_{F} \geq & w \frac{(1+\gamma)(1+2 \gamma)}{2} \Gamma(1+\gamma)^{r_{1}+r_{2}} \\
& \times \Gamma(3 / 2+\gamma)^{r_{2}} 2^{-r_{1}-r_{2}} \pi^{-r_{2} / 2} \\
& \times \exp \left((- 1 - \gamma) \left(\left(r_{1}+r_{2}\right) \frac{\Gamma \prime}{\Gamma}((1+\gamma) / 2)\right.\right. \\
& \left.\left.\quad+r_{2} \frac{\Gamma \prime}{\Gamma}(1+\gamma / 2)+2 / \gamma+1 /(1+\gamma)\right)\right) .
\end{aligned}
$$

This estimate is reasonably good for $n \geq 6$ and for small discriminants. The values for γ lie in the interval $] 0,1[$.
(Zimmert 1981)

Regulator bounds II

An upper bound:

$$
\operatorname{Reg}_{F}<w 2^{2-r_{1}}(2 \pi)^{-r_{2}}\left(\frac{b e \log \left|d_{F}\right|}{n-1}\right)^{n-1} \sqrt{\left|d_{F}\right|}
$$

for $b=\left(1+\log \pi / 2+r_{2} \log 2 / n\right)^{-1}$.
(Siegel 1969)
Let F be primitive. We put $\kappa=4^{\lfloor n / 2\rfloor}$ in case F is totally real, else $\kappa=n^{n}$. Then we have:

$$
\operatorname{Reg}_{R} \geq\left(\left(\frac{3(\log (|d(R)| / \kappa))^{2}}{(n-1) n(n+1)-6 r_{2}}\right)^{r} \frac{2^{r_{2}}}{n \gamma_{r}^{r}}\right)^{1 / 2}
$$

(P 1977)

Examples of regulators

Already for real-quadratic number fields with discriminants of the same size the corresponding values of the regulators Reg_{F} can differ substantially:

$\quad d_{F}$	4.82	4.83	4.86	4.87
Reg_{F}	2.8934	5.0998	9.9431	4.0250
d_{F}	4.9930	4.9931	9933	4.9934
Reg_{F}	23.8663	189.0783	5.0074	221.3672

Computing regulator bounds I

We choose a constant $K \geq(1+\sqrt{2}) n$ and enumerate the set

$$
\begin{aligned}
S_{K}:= & \left\{\alpha \in R \mid T_{2}(\alpha)<K\right\} \\
& \cup\left\{\alpha \in R \mid \alpha^{-1} \in R, T_{2}\left(\alpha^{-1}\right)<K\right\} .
\end{aligned}
$$

Obviously, $T U(R)$ is contained in S_{K}.
Let us also assume that S_{K} contains k independent units
($0 \leq k \leq r$).

Computing regulator bounds II

Next we calculate

$$
M_{i}^{*}=\left\{\begin{array}{c}
\min \left\{C \mid \exists \varepsilon_{1}, \ldots, \varepsilon_{i} \in U(R) \cap S_{K}\right. \\
\text { indep. with } \left.\sum_{j=1}^{n} \log ^{2}\left|\varepsilon_{i}^{(j)}\right| \leq C\right\} \\
\text { for } 1 \leq i \leq k \\
K \quad \text { for } k+1 \leq i \leq r
\end{array}\right.
$$

and then

$$
\tilde{M}_{i}:=\frac{n-j}{4} \operatorname{arcosh}^{2}\left(\frac{M_{i}^{*}-j}{n-j}\right)
$$

The rational integer j is to be chosen in the interval $[0, n-2]$ as small as possible.

Computing regulator bounds III

Lemma A unit $\varepsilon \in U_{R}$ with $T_{2}(\varepsilon) \geq M_{i}^{*}$ and $T_{2}\left(\varepsilon^{-1}\right) \geq M_{i}^{*}$ satisfies

$$
\sum_{j=1}^{n} \log ^{2}\left|\varepsilon^{(j)}\right| \geq \tilde{M}_{i}
$$

From this we deduce the following lower regulator bound.
Corollary The regulator Reg_{R} of the order R of F satisfies

$$
\operatorname{Reg}_{R} \geq\left(\tilde{M}_{1} \cdots \tilde{M}_{r} 2^{r_{2}} n^{-1} \gamma_{r}^{-r}\right)^{1 / 2}
$$

Enlarging subgroups I

For this we need to test units of the form $\varepsilon_{0}{ }^{m_{0}} \cdots \varepsilon_{r}{ }^{m_{r}}$ with $\varepsilon_{0}=\zeta$, whether they are p-th powers for a prime number p smaller than the index of U in $U(R)$.

At first, the elements ε_{i} are tested. If ε_{i} is not a p-th power, then the polynomial $t^{p}-\varepsilon_{i} \in F[t]$ is irreducible.

According to the Chebotarev Density Theorem there exists a prime ideal \mathbf{q} in o_{F} which does not contain the discriminant of F and for which $t^{p}-\varepsilon_{i}$ remains irreducible in $o_{F} / \mathbf{q}[t]$.

Enlarging subgroup II

The prime number p must divide $N(\mathbf{q})-1$. (Otherwise, there exists $u \in \mathbb{N}$ with $p u \equiv 1 \bmod (N(\mathbf{q})-1)$ implying $\left(\varepsilon_{i}{ }^{q}\right)^{p}=\varepsilon_{i}$ in o_{F} / \mathbf{q} in contradiction to our choice of \mathbf{q}.) It follows that p divides the order of ε_{i} in o_{F} / \mathbf{q}.

Hence, for $j=i+1, \ldots, r$ there exist unique exponents $\nu_{j} \in\{0,1, \ldots, p-1\}$ such that $\varepsilon_{i} \nu_{j} \varepsilon_{j}$ is congruent to a p-th power modulo \mathbf{q}.

We therefore replace the generating elements ε_{j} by
$\varepsilon_{i}{ }^{\nu_{j}} \varepsilon_{j}$ for $(i+1 \leq j \leq r)$, i.e. we set $\tilde{\varepsilon}_{i}=\varepsilon_{i}, \tilde{\varepsilon}_{j}=\varepsilon_{i}^{\nu_{j}} \varepsilon_{j}$.

Enlarging subgroup III

In any equation $\omega^{p}=\tilde{\varepsilon}_{i}^{m_{i}} \cdots \tilde{\varepsilon}_{r}^{m_{r}}$ the product $\tilde{\varepsilon}_{i+1}^{m_{i+1}} \cdots \tilde{\varepsilon}_{r}^{m_{r}}$ is congruent to a p-th power modulo \mathbf{q}. Then also $\tilde{\varepsilon}_{i}^{m_{i}}$ must be a p-th power yielding $m_{i}=0$.

As a consequence we need to test only, whether $\tilde{\varepsilon}_{i+1}^{m_{i+1}} \cdots \tilde{\varepsilon}_{r}^{m_{r}}$ are p-th powers instead of $\varepsilon_{i}^{m_{i}} \cdots \varepsilon_{r}{ }^{m_{r}}$.

Applying this idea for $i=0,1, \ldots, r-1$ (respectively $i=1, \ldots, r-1$ in the case that ε_{0} is itself a p-th power) we reduce the number of necessary tests for p-th powers from roughly p^{r} to at most $r+1$.

Example I

We let $F=\mathbb{Q}(\rho)$ with $\rho^{19}+2=0$. The Dedekind test implies $o_{F}=\mathbb{Z}[\rho]$. We put $\omega_{i}:=\rho^{i-1}(1 \leq i \leq 19)$. The discriminant of F is

$$
d_{F}=-19^{19} 2^{18}=-518630842213417245507316350976
$$

With a suitable factor basis and relations we calculate a system of independent units. The corresponding coefficient vectors are

$$
\begin{aligned}
& \varepsilon_{1}=[-1,2,-1,-2,-6,2,-1,1,-2,-3,-2,2,1,0,-4,2,1,1] \\
& \varepsilon_{2}=[-15,6,7,-15,7,5,-13,8,2,-11,9,0,-9,9,-1,-7,8,-2,-5] \\
& \varepsilon_{3}=[-45,44,-41,41,-38,38,-37,33,-35,33,-29,32,-29, \\
& \left.\varepsilon_{4}=26,-29,26,-24,25,-23\right] \\
& \varepsilon_{5}=[-3,-6,-5,-1,8,8,1,-5,-5,-2,-2,1,4,6,0,-5,-5,-1,2] \\
& \varepsilon_{6}=[-7,4,-3,-1,4,-4,4,-1,-1,3,-5,2,0,-1,4,-3,1,-1,-2] \\
& \varepsilon_{7}=11,-38,0,31,-18,-21,26,5,-29,8,23,-19,-13,24, \\
& \varepsilon_{8}=[9,2,-2,-18,-16] \\
& \varepsilon_{9}=[-19,15,9,-10,-2,-2,-5,-5,-5,1,4,6,3,1,1,2,1,-3,-5] \\
& \left.\varepsilon_{9}=-1,-4,-4,2\right] \\
&
\end{aligned}
$$

Example II

The regulator of that system of independent units is 36273616083.86579.

Via $K=2 T_{2}\left(\omega_{n}\right)$ we obtain a lower regulator bound 433281.296, hence an upper bound of 83718 for the index.
The enlarging of the subgroup yields fundamental units

$$
\begin{aligned}
& E_{1}=[-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] \\
& E_{2}=[-1,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0] \\
& E_{3}=[1,-1,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0] \\
& E_{4}=[1,1,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0] \\
& E_{5}=[1,-1,0,-1,0,-2,0,0,1,0,1,0,1,0,0,-1,0,-1,0] \\
& E_{6}=[-1,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0] \\
& E_{7}=[1,-2,0,2,-1,-1,1,1,-2,0,1,-1,-1,1,0,-1,0,1-1] \\
& E_{8}=[-1,2,1,-3,2,-1,-2,1,0,-2,2,-1,-1,1,-1,-2,1,-2,-1] \\
& E_{9}=[1,-3,2,-1,1,0,-2,1,-1,1,0,-1,0,0,0,1-1,0,0]
\end{aligned}
$$

with regulator 47980973.65927 and exact index

$$
\left(U_{F}:\left\langle-1, \varepsilon_{1}, \ldots, \varepsilon_{9}\right\rangle\right)=756=2^{2} 3^{3} 7 .
$$

Example of a norm equation

Let $F=\mathbb{Q}(\sqrt{10})$. Its maximal order is $o_{F}=\mathbb{Z}[\sqrt{10}]$ with fundamental unit $E=3+\sqrt{10}$ of norm -1 . The ideal $2 o_{F}$ is the square of the prime ideal $\mathbf{p}=\mathbf{2} \mathbf{o}_{\mathbf{F}}+\sqrt{\mathbf{1 0}} \mathbf{o}_{\mathbf{F}}$. We want to check, whether \mathbf{p} is principal. This is done by computing all $\beta \in o_{F}$ with absolute norm 2. Hence, we need to solve

$$
\left|x^{2}-10 y^{2}\right|=2(x, y \in \mathbb{Z})
$$

Multiplying β by a suitable power of E we can assume that

$$
1<x+y \sqrt{10}<E .
$$

Example of a norm equation (cont.)

Combining this inequality with the condition $(x+y \sqrt{10})(x-y \sqrt{10})= \pm 2$ we obtain lower and upper bounds for y :

$$
1 \mp \frac{2}{E}<2 y \sqrt{10}<E \mp \frac{2}{E} .
$$

Only $y=1$ satisfies these inequalities. Hence, there is no solution of that norm equation.

