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Computation of unit groups and class groups I

Units

Let F be an algebraic number field of degree n = r1 + 2r2. A unit
of an order R of F is an invertible element ε of R. The group of
units of R will be denoted by U(R).

1. α ∈ R belongs to U(R) precisely if N(α) ∈ U(Z) = {±1}.
2. R contains only a finite number of non–associate elements of
bounded norm. (Elements α, β ∈ R are called associate if α/β
and β/α belong to R.)
3. For any constant C > 0 there exist only finitely many elements
α ∈ R such that the absolute values of all conjugates of α are
bounded by C .
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Roots of unity

An element ξ ∈ R is a root of unity precisely if all conjugates of ξ
have absolute value 1.

All roots of unity of R form a finite cyclic subgroup which we
denote by TU(R), in case of R = oF by TUF .

A generator of the group TU(R) of order w will be denoted by ζ
(primitive w–th root of unity).

For imaginary quadratic extensions F (2 = n = 2r2) we have
U(R) = TU(R).
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Structure of the unit group

The conjugates of x ∈ F are denoted by x (1), ..., x (n). They are
ordered in the usual way such that x (j) ∈ R for 1 ≤ j ≤ r1,
x (j) ∈ C \ R for r1 < j ≤ n subject to

x (r1+r2+j) = ¯x (r1+j) for 1 ≤ j ≤ r2.

Theorem (Dirichlet) The unit group U(R) of R is a direct product
of its torsion subgroup TU(R) with r = r1 + r2 − 1 infinite cyclic
groups:

U(R) = TU(R)× 〈E1〉 · · · × 〈Er 〉 ∼= Cw Zr .

The generators E1, ...,Er form a system of fundamental units.
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Regulator

We consider the logarithmic map

L : F× → Rr : x 7→ (c1 log |x (1)|, . . . , cr log |x (r)|) ,

with constants cj = 1 for 1 ≤ j ≤ r1 and cj = 2 for j > r1.

The image of the unit group L(U(R)) is a lattice of determinant

RegR :=

∣∣∣∣∣∣∣∣∣∣
det


L(E1)
.
.
.

L(Er )


∣∣∣∣∣∣∣∣∣∣

=: d(L(U(R))) .

RegR is called the regulator of the order R.

In case R = oF we write RegF instead of RegR .
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Independent units

Units ε1, . . ., εk are called independent, if a relation

εm1
1 · · · ε

mk
k = 1 (mi ∈ Z)

implies m1 = . . . = mk = 0. Otherwise they are said to be
dependent.

Remark ε1, . . ., εk are independent if and only if L(ε1), . . .,
L(εk) are R-linearly independent.

The computation of fundamental units is usually done by
calculating a maximal system of independent units which generates
a subgroup of U(R) of small index. Then this subgroup is gradually
enlarged to all of U(R).
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Independent units

We choose suitable sets of conjugates
I = {i1, . . . , iµ} ⊂ {1, . . . , r1 + r2}.

By Ĩ we denote the subset of {1, . . . , n} containing i1, . . . , iµ and
also all iν + r2 in case iν > r1 belongs to I .

We set

#Ĩ = µ̃, J = {1, . . . , r1 + r2} \ I , J̃ = {1, . . . , n} \ Ĩ .
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Independent units

Then we calculate a sequence of elements {βI ,k}k∈Z≥0 and
modules MI ,k with the following properties:

βI ,0 = 1, MI ,0 := R

βI ,k+1 ∈ MI ,k , MI ,k+1 :=
1

βI ,k+1
MI ,k

|βI ,k+1
(j)| < 1 ∀j ∈ Ĩ , |βI ,k+1

(j)| ≥ 1 ∀j ∈ J̃,

k+1∏
i=0

|N(βI ,i )| ≤ C̃

with a fixed constant C̃ > 0.
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Independent units

Next we compute βI ,k+1 ∈ MI ,k .
We choose d ≥ 1 sufficiently large, for example
d ≥ 2n(n−1)/2|d(R)|. Then we set

λj = d for j ∈ J̃, λj = d1−n/µ̃ for j ∈ Ĩ .

For a Z–Basis ω1, ..., ωn of MI ,k we define a positive definite
quadratic form with attached weights:

T2,λ(x) =
n∑

j=1

λj
−2 |

n∑
i=1

xiωi
(j)|

2

.

βI ,k+1 is chosen as first basis element of a basis of MI ,k which is
LLL–reduced with respect to T2,λ.
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Independent units

Upon detecting modules MI ,µ = MI ,ν with indices µ > ν we obtain
a unit

ε =

µ∏
k=ν+1

βI ,k .

with
|ε(j)| < 1 ∀j ∈ Ĩ and |ε(j)| ≥ 1 ∀j ∈ J̃ .

These ideas can be made more efficient by using factor bases and
relations, similar to class group computations.
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Independent units

A factor basis is a set B of prime ideals of R, say,

B = {p1, . . . ,pv} .

By relations we denote elements αi of R (or F ) for which the
principal ideals αiR are power products of the elements of B:

αiR =
w∏
j=1

p
aij
j .
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Independent units

Hence, a relation is in 1− 1−correspondence with an exponent
vector ai = (ai1, . . . , aiv ). Having found sufficiently many relations

a1, . . . , ak ,

e.g. k > v , we obtain non–trivial linear presentations

k∑
µ=1

mµaµ = 0 (mµ ∈ Z) ,

hence, a unit

ε =
k∏

µ=1

α
mµ
µ

of R.
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Independent units

Clearly, we are in need of a method for proving the
dependence/independence of the calculated units.

Theorem (Dobrowolsky) An element α ∈ oF is either a root of
unity or there exists a conjugate α(j) of α subject to

|α(j)| > 1 +
1

6

log n

n2
.

Corollary 1 A unit ε ∈ oF is either a root of unity or its image in
logarithmic space satisfies

‖ L(ε) ‖2>
21

128

log n

n2
.
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Calculation of fundamental units

Corollary 2 If F is totally real then α ∈ oF is either of the form
cos qπ (q ∈ Q) or it has a conjugate α(j) subject to

|α(j)| > 2 +
1

1152

log2 2n

n4
.

At this stage we assume that we know TU(R) as well as r
independent units ε1, . . . , εr of R. If we know an upper bound for
the index of

U := 〈TU(R), ε1, . . . , εr 〉
in the full unit group U(R) then there are well known methods for
enlarging U to U(R).

That index is easily seen to be

(U(R) : U) =
d(L(U))

d(L(U(R)))
.



Computation of unit groups and class groups I

Regulator bounds I

Since d(L(U)) can be explicitly calculated it suffices to determine
a lower bound for the regulator d(L(U(R))) = RegR in order to
obtain an upper bound for that index.

RegF ≥ w (1+γ)(1+2γ)
2 Γ(1 + γ)r1+r2

×Γ(3/2 + γ)r2 2−r1−r2π−r2/2

× exp
(
(−1− γ)

(
(r1 + r2) Γ′

Γ ((1 + γ)/2)
+ r2

Γ′
Γ (1 + γ/2) + 2/γ + 1/(1 + γ)

))
.

This estimate is reasonably good for n ≥ 6 and for small
discriminants. The values for γ lie in the interval ]0, 1[.
(Zimmert 1981)
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Regulator bounds II

An upper bound:

RegF < w 22−r1(2π)−r2

(
be log |dF |

n − 1

)n−1√
|dF |

for b = (1 + log π/2 + r2 log 2/n)−1.
(Siegel 1969)

Let F be primitive. We put κ = 4bn/2c in case F is totally real, else
κ = nn. Then we have:

RegR ≥
((

3(log(|d(R)|/κ))2

(n − 1)n(n + 1)− 6r2

)r
2r2

nγrr

)1/2

.

(P 1977)
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Examples of regulators

Already for real-quadratic number fields with discriminants of the
same size the corresponding values of the regulators RegF can
differ substantially:

dF 4 · 82 4 · 83 4 · 86 4 · 87
RegF 2.8934 5.0998 9.9431 4.0250

dF 4 · 9930 4 · 9931 9933 4 · 9934
RegF 23.8663 189.0783 5.0074 221.3672
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Computing regulator bounds I

We choose a constant K ≥ (1 +
√

2)n and enumerate the set

SK := {α ∈ R | T2(α) < K}
∪{α ∈ R | α−1 ∈ R,T2(α−1) < K} .

Obviously, TU(R) is contained in SK .

Let us also assume that SK contains k independent units
(0 ≤ k ≤ r).
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Computing regulator bounds II

Next we calculate

M∗i =


min{C | ∃ ε1, . . . , εi ∈ U(R) ∩ SK

indep. with
∑n

j=1 log2 |ε(j)
i | ≤ C}

for 1 ≤ i ≤ k
K for k + 1 ≤ i ≤ r

and then

M̃i :=
n − j

4
arcosh2

(
M∗i − j

n − j

)
.

The rational integer j is to be chosen in the interval [0, n − 2] as
small as possible.
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Computing regulator bounds III

Lemma A unit ε ∈ UR with T2(ε) ≥ M∗i and T2(ε−1) ≥ M∗i
satisfies

n∑
j=1

log2 |ε(j)| ≥ M̃i .

From this we deduce the following lower regulator bound.

Corollary The regulator RegR of the order R of F satisfies

RegR ≥ (M̃1 · · · M̃r2r2n−1γ−rr )1/2 .
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Enlarging subgroups I

For this we need to test units of the form ε0
m0 · · · εrmr with

ε0 = ζ, whether they are p-th powers for a prime number p smaller
than the index of U in U(R).

At first, the elements εi are tested. If εi is not a p-th power, then
the polynomial tp − εi ∈ F [t] is irreducible.

According to the Chebotarev Density Theorem there exists a prime
ideal q in oF which does not contain the discriminant of F and for
which tp − εi remains irreducible in oF/q[t].
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Enlarging subgroup II

The prime number p must divide N(q)− 1. (Otherwise, there
exists u ∈ N with pu ≡ 1 mod (N(q)− 1) implying (εi

q)p = εi in
oF/q in contradiction to our choice of q.) It follows that p divides
the order of εi in oF/q.

Hence, for j = i + 1, . . . , r there exist unique exponents
νj ∈ {0, 1, . . . , p − 1} such that εi

νj εj is congruent to a p-th power
modulo q.

We therefore replace the generating elements εj by
εi
νj εj for (i + 1 ≤ j ≤ r), i.e. we set ε̃i = εi , ε̃j = εi

νj εj .
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Enlarging subgroup III

In any equation ωp = ε̃mi
i · · · ε̃mr

r the product ε̃
mi+1

i+1 · · · ε̃mr
r is

congruent to a p-th power modulo q. Then also ε̃mi
i must be a

p-th power yielding mi = 0.

As a consequence we need to test only, whether ε̃
mi+1

i+1 · · · ε̃mr
r are

p-th powers instead of εi
mi · · · εrmr .

Applying this idea for i = 0, 1, ..., r − 1 (respectively i = 1, ..., r − 1
in the case that ε0 is itself a p-th power) we reduce the number of
necessary tests for p-th powers from roughly pr to at most r + 1.
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Example I

We let F = Q(ρ) with ρ19 + 2 = 0. The Dedekind test implies
oF = Z[ρ]. We put ωi := ρi−1 (1 ≤ i ≤ 19). The discriminant of
F is

dF = −1919218 = −518630842213417245507316350976 .

With a suitable factor basis and relations we calculate a system of
independent units. The corresponding coefficient vectors are

ε1 = [−1, 2,−1,−2,−6, 2,−1, 1,−2,−3,−2, 2, 1, 0,−4, 2, 1, 1]
ε2 = [−15, 6, 7,−15, 7, 5,−13, 8, 2,−11, 9, 0,−9, 9,−1,−7, 8,−2,−5]
ε3 = [−45, 44,−41, 41,−38, 38,−37, 33,−35, 33,−29, 32,−29,

26,−29, 26,−24, 25,−23]
ε4 = [−3,−6,−5,−1, 8, 8, 1,−5,−5,−2,−2, 1, 4, 6, 0,−5,−5,−1, 2]
ε5 = [−7, 4,−3,−1, 4,−4, 4,−1,−1, 3,−5, 2, 0,−1, 4,−3, 1,−1,−2]
ε6 = [17,−38, 0, 31,−18,−21, 26, 5,−29, 8, 23,−19,−13, 24,

1,−23, 10, 18,−16]
ε7 = [9, 2,−2,−2,−2,−2,−5,−5,−5, 1, 4, 6, 3, 1, 1, 2, 1,−3,−5]
ε8 = [−19, 15, 9,−10,−3,−4, 15,−2,−13, 5, 3, 7,−10,−6, 13,

−1,−4,−4, 2]
ε9 = [−91,−147,−84, 21, 44,−32,−109,−91,−2, 58, 28,−45,

−67,−9, 60, 67, 11,−34,−15]
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Example II

The regulator of that system of independent units is
36273616083.86579.
Via K = 2T2(ωn) we obtain a lower regulator bound 433281.296,
hence an upper bound of 83718 for the index.
The enlarging of the subgroup yields fundamental units

E1 = [−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
E2 = [−1, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0]
E3 = [1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0]
E4 = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0]
E5 = [1,−1, 0,−1, 0,−2, 0, 0, 1, 0, 1, 0, 1, 0, 0,−1, 0,−1, 0]
E6 = [−1, 1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0]
E7 = [1,−2, 0, 2,−1,−1, 1, 1,−2, 0, 1,−1,−1, 1, 0,−1, 0, 1 − 1]
E8 = [−1, 2, 1,−3, 2,−1,−2, 1, 0,−2, 2,−1,−1, 1,−1,−2, 1,−2,−1]
E9 = [1,−3, 2,−1, 1, 0,−2, 1,−1, 1, 0,−1, 0, 0, 0, 1 − 1, 0, 0]

with regulator 47980973.65927 and exact index

(UF : 〈−1, ε1, . . . , ε9〉) = 756 = 22 33 7 .
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Example of a norm equation

Let F = Q(
√

10). Its maximal order is oF = Z[
√

10] with
fundamental unit E = 3 +

√
10 of norm -1. The ideal 2oF is the

square of the prime ideal p = 2oF +
√
10oF. We want to check,

whether p is principal. This is done by computing all β ∈ oF with
absolute norm 2. Hence, we need to solve

|x2 − 10y2| = 2 (x , y ∈ Z) .

Multiplying β by a suitable power of E we can assume that

1 < x + y
√

10 < E .
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Example of a norm equation (cont.)

Combining this inequality with the condition
(x + y

√
10)(x − y

√
10) = ±2 we obtain lower and upper bounds

for y :

1∓ 2

E
< 2y

√
10 < E ∓ 2

E
.

Only y = 1 satisfies these inequalities. Hence, there is no solution
of that norm equation.


