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Units

Let F be an algebraic number field of degree n = r; + 2r>. A unit
of an order R of F is an invertible element € of R. The group of
units of R will be denoted by U(R).
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Units

Let F be an algebraic number field of degree n = r; + 2r>. A unit
of an order R of F is an invertible element € of R. The group of
units of R will be denoted by U(R).

1. @ € R belongs to U(R) precisely if N(a) € U(Z) = {£1}.

2. R contains only a finite number of non—associate elements of
bounded norm. (Elements «, § € R are called associate if o/
and 3/« belong to R.)

3. For any constant C > 0 there exist only finitely many elements
a € R such that the absolute values of all conjugates of « are
bounded by C.
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Roots of unity

An element £ € R is a root of unity precisely if all conjugates of &
have absolute value 1.

All roots of unity of R form a finite cyclic subgroup which we
denote by TU(R), in case of R = of by TUF.

A generator of the group TU(R) of order w will be denoted by ¢
(primitive w—th root of unity).

For imaginary quadratic extensions F (2 = n = 2r,) we have
U(R) = TU(R).



Computation of unit groups and class groups |

Structure of the unit group

The conjugates of x € F are denoted by x(), ..., x(") They are
ordered in the usual way such that xU) e R for 1 <j<n,

xU) € C\R for n < j < n subject to

x(ntr+j) — X(r1_+j) for 1 <j<n.
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Structure of the unit group

The conjugates of x € F are denoted by x(), ..., x(") They are
ordered in the usual way such that xU) e R for 1 < j < n,

xU) € C\R for r, < j < n subject to

x(ntnt)) — x(n+i) for 1 <j<n.

Theorem (Dirichlet) The unit group U(R) of R is a direct product
of its torsion subgroup TU(R) with r = r; + ro — 1 infinite cyclic
groups:

U(R) = TU(R) x (Ey) -+ x (E) = C,Zr .

The generators Eq, ..., E, form a system of fundamental units.
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Regulator
We consider the logarithmic map
L:F* =R x—(alog|xM|,... clog|xN]),
with constants ¢; =1 for 1 < j < r and ¢; =2 for j > ;.
The image of the unit group L(U(R)) is a lattice of determinant

L(Er)
Regp :— |det | . . d(L(U(R))) .

L(E)
Regp is called the regulator of the order R.

In case R = o we write Regg instead of Regp.
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Independent units

Units €1, ..., €4 are called independent, if a relation

eft-elt =1 (mjeZ)

implies m; = ... = my = 0. Otherwise they are said to be
dependent.
Remark ¢, ..., g, are independent if and only if L(¢1), ...,

L(ek) are R-linearly independent.

The computation of fundamental units is usually done by
calculating a maximal system of independent units which generates
a subgroup of U(R) of small index. Then this subgroup is gradually
enlarged to all of U(R).
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Independent units

We choose suitable sets of conjugates
| = {I'l,...,llu} C {1,...,r1+r2}.

By 7 we denote the subset of {1,..., n} containing i,..., i, and
also all i, + rp in case i, > r; belongs to /.

We set

#7:,&,J:{1,...,r1+r2}\l,.7:{1,...,n}\7.
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Independent units

Then we calculate a sequence of elements {3/ x}, ;>0 and
modules M, , with the following properties:

Bro=1, Mpg:=R

1

Bik+1 € Myk, My y1 = ik
) +1

M

B <1 Viel, 1Ban) >1 vjiel,

k+1

| JRLUEMIEE

i=0
with a fixed constant C > 0.
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Independent units

Next we compute 3 k41 € My k.
We choose d > 1 sufficiently large, for example
d > 2"("=1/2|d(R)|. Then we set

AN=d forjed N\j=d""" forjel.

For a Z—Basis wy, ...,w, of M), we define a positive definite
quadratic form with attached weights:

Tg’)\(x) = Z )\jiz |Z X,'w,'(j)|
=1 i-1

B1.k+1 is chosen as first basis element of a basis of M, , which is
LLL-reduced with respect to T ».

2
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Independent units

Upon detecting modules M, ,, = M, , with indices ;1 > v we obtain

a unit
o
e= ]I B

k=v+1
with ' .
eV <1VjeTand [V >1VjeT .
These ideas can be made more efficient by using factor bases and
relations, similar to class group computations.
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Independent units

A factor basis is a set B of prime ideals of R, say,
B = {p1,...,pv} -

By relations we denote elements «; of R (or F) for which the
principal ideals ;R are power products of the elements of B:
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Independent units

Hence, a relation is in 1 — 1—correspondence with an exponent
vector a; = (a1, .. ., aj). Having found sufficiently many relations

ai, ..., Ak,

e.g. k > v, we obtain non—trivial linear presentations
k
Zm#au =0 (m,eZ),
p=1

hence, a unit
k
_ my
- = Tlof
p=1

of R.
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Independent units

Clearly, we are in need of a method for proving the
dependence/independence of the calculated units.

Theorem (Dobrowolsky) An element « € of is either a root of
unity or there exists a conjugate al) of a subject to

11
al)| > 14 ==&
n

6

Corollary 1 A unit € € of is either a root of unity or its image in
logarithmic space satisfies

21 Iogn
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Calculation of fundamental units

Corollary 2 If F is totally real then « € of is either of the form
cos gm (g € Q) or it has a conjugate oY) subject to
: 1 log?2n
D) >py - 08 <N
01> 24 15
At this stage we assume that we know TU(R) as well as r
independent units €1, ...,¢, of R. If we know an upper bound for
the index of
U := (TU(R),e1,...,&)
in the full unit group U(R) then there are well known methods for
enlarging U to U(R).

That index is easily seen to be
d(L(V))

(WR) =) = Fiuery)
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Regulator bounds |

Since d(L(U)) can be explicitly calculated it suffices to determine
a lower bound for the regulator d(L(U(R))) = Regg in order to
obtain an upper bound for that index.
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Regulator bounds |

Since d(L(U)) can be explicitly calculated it suffices to determine
a lower bound for the regulator d(L(U(R))) = Regg in order to
obtain an upper bound for that index.

RegF > W(1+’Y)gl+27)r(1+,y)r1+rz
xT(3/2 4+ )22 n—rg=r/2
xexp ((—1 - )((r1+rz) ‘((1+7)/2)
+rzr(1+7/2) 2/7+1/1+7))) -

This estimate is reasonably good for n > 6 and for small
discriminants. The values for y lie in the interval ]0, 1.
(Zimmert 1981)
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Regulator bounds II

An upper bound:

n—1

n—1
Regr < W22*r1(2ﬂ)*f2 (be'Og|dF|> V| dE|

for b= (1 +logm/2+ rylog2/n)~t.
(Siegel 1969)

Let F be primitive. We put k = 47/2) in case F is totally real, else
k = n". Then we have:

Regp > <<( 3(log(|d(R)|/k))? >f on >1/2 |

n—1)n(n+1)—6r/) nyf

(P 1977)
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Examples of regulators

Already for real-quadratic number fields with discriminants of the
same size the corresponding values of the regulators Regg can
differ substantially:

dr 4.82 4.83 4.8 4-87
Regr 2.8934 5.0998 9.9431 4.0250

dr 4.9930 4-9931 9933 4-9934
Regr 23.8663 189.0783 5.0074 221.3672
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Computing regulator bounds |

We choose a constant K > (1 + 1/2)n and enumerate the set

Sk = {aeR| o)< K}
UacR|ateR, Tola™t) < K}.

Obviously, TU(R) is contained in Sk.

Let us also assume that Sk contains k independent units
(0<k<r).
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Computing regulator bounds Il

Next we calculate
min{C ‘ deq,..., & € U(R) N Sk
indep. with Y7, log® |€$J)| < C}
’ forl1 <j<k
K fork+1<i<r

y . ME
M; = n ‘/arcoshz (’J> .
4 n—j

The rational integer j is to be chosen in the interval [0, n — 2] as
small as possible.

and then
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Computing regulator bounds Il

Lemma A unit € € Ug with To(e) > M} and To(e71) > M}
satisfies

Z:Iog2 eV > ;.
j=1

From this we deduce the following lower regulator bound.

Corollary  The regulator Regg of the order R of F satisfies

Regr > (My - M,22n 1y 1)Y/2
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Enlarging subgroups |

For this we need to test units of the form g™ - - - ¢, with

€0 = (, whether they are p-th powers for a prime number p smaller
than the index of U in U(R).

At first, the elements ¢; are tested. If ; is not a p-th power, then
the polynomial tP — ¢; € F[t] is irreducible.

According to the Chebotarev Density Theorem there exists a prime
ideal q in o which does not contain the discriminant of F and for
which tP — ¢; remains irreducible in of/q[t].
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Enlarging subgroup Il

The prime number p must divide N(q) — 1. (Otherwise, there
exists u € N with pu =1 mod (N(q) — 1) implying (£;9)? =¢; in
orF/q in contradiction to our choice of q.) It follows that p divides
the order of ¢; in of/q.

Hence, for j =i+ 1,...,r there exist unique exponents
vj €{0,1,...,p — 1} such that ¢;%¢; is congruent to a p-th power
modulo q.

We therefore replace the generating elements ¢; by
eiigj for (i+1<j<r) ie weseté =¢;, & =¢c%ej.
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Enlarging subgroup Il

; _ zmj ~m ~Mit1 ~my
In any equation wP = &;" - -- €' the product 5,-+’1m-'- SEM s
congruent to a p-th power modulo q. Then also ;" must be a

p-th power yielding m; = 0.

As a consequence we need to test only, whether 5,{1’{1 < €7 are
p-th powers instead of ;™ ---¢,™ .

Applying this idea for i = 0,1,...,r — 1 (respectively i = 1,....r — 1
in the case that ¢ is itself a p-th power) we reduce the number of
necessary tests for p-th powers from roughly p" to at most r + 1.
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Example |

We let F = Q(p) with p*® 4+ 2 = 0. The Dedekind test implies
oF = Z[p]. We put w; := p'~! (1 < i < 19). The discriminant of
Fis

de = —191921® — _518630842213417245507316350976 .

With a suitable factor basis and relations we calculate a system of
independent units. The corresponding coefficient vectors are

e = [-1,2,-1,-2,-6,2,—1,1,-2,—3,-2,2,1,0, —4,2,1,1]
& = [-15,6,7,—15,7,5, —13,8,2,—11,9,0,—9,9, —1, —7,8, —2, —5]
e3 = [—45,44, —41,41, 38,38, —37,33, —35,33, —29,32, —29,
26, —29, 26, —24, 25, —23]
&g = [-3,-6,-5,-1,8,8,1,—5,—5,-2,-2,1,4,6,0, -5, -5, —1,2]
es = [-7,4,-3,-1,4,-4,4,—-1,-1,3,-5,2,0,—1,4,-3,1, -1, -2]
es = [17,—38,0,31, —18, —21,26,5, —29, 8,23, —19, —13, 24,
1, —23, 10, 18, —16]
ez = [9,2,-2,-2,-2,-2,-5,-5,-5/1,4,6,3,1,1,2,1, -3, —5]
eg = [-19,15,9,—10,—3,—4,15, —2, —13,5,3,7, —10, —6, 13,
—1,—4,—4,2]
g = [-91,—147,—84,21,44, —32, —109, —91, —2, 58, 28, —45,

—67,—9, 60,67, 11, —34, —15]
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Example |l

The regulator of that system of independent units is
36273616083.86579.

Via K = 2T3(wp) we obtain a lower regulator bound 433281.296,
hence an upper bound of 83718 for the index.

The enlarging of the subgroup yields fundamental units

E = [-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

E = [-1,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0]

B3 = [1,-1,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0]

E, = [1,1,0,0,1,0,0,0,0,0,0,0, —1,0,0,0, —1,0,0]

Es = [1,-1,0,-1,0,-2,0,0,1,0,1,0,1,0,0, —1,0, —1,0]

E = [-1,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1, —1,0]

E, = [1,-2,0,2,-1,-1,1,1,-2,0,1,—1,-1,1,0,—1,0,1 — 1]

Eg = [-1,2,1,-3,2,-1,-2,1,0,-2,2,-1,-1,1,—-1,-2,1, -2, —1]]
Eg = [1,-3,2,-1,1,0,-2,1,-1,1,0,—1,0,0,0,1 — 1,0,0]

with regulator 47980973.65927 and exact index

(UF : (—1,e1,...,69)) =756 = 22337,
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Example of a norm equation

Let F = Q(v/10). Its maximal order is of = Z[v/10] with
fundamental unit E = 3 + v/10 of norm -1. The ideal 20F is the
square of the prime ideal p = 20f + v/100f. We want to check,
whether p is principal. This is done by computing all 8 € of with
absolute norm 2. Hence, we need to solve

x> —10y%| =2 (x,y €Z) .
Multiplying 5 by a suitable power of E we can assume that

l1<x+yvIO<E .
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Example of a norm equation (cont.)

Combining this inequality with the condition
(x + yv/10)(x — y+/10) = 42 we obtain lower and upper bounds
for y:

2 2
15z <YVIO<EF £ .

Only y = 1 satisfies these inequalities. Hence, there is no solution
of that norm equation.



