Computation of unit groups and class groups I

Computation of unit groups and class groups I

Michael E. Pohst

Institut für Mathematik Technische Universität Berlin

June 22, 2013

Units

Let *F* be an algebraic number field of degree $n = r_1 + 2r_2$. A **unit** of an order *R* of *F* is an invertible element ε of *R*. The group of units of *R* will be denoted by U(R).

1. $\alpha \in R$ belongs to U(R) precisely if $N(\alpha) \in U(\mathbb{Z}) = \{\pm 1\}$. **2.** R contains only a finite number of non-associate elements of bounded norm. (Elements $\alpha, \beta \in R$ are called **associate** if α/β and β/α belong to R.)

3. For any constant C > 0 there exist only finitely many elements $\alpha \in R$ such that the absolute values of all conjugates of α are bounded by C.

Units

Let *F* be an algebraic number field of degree $n = r_1 + 2r_2$. A **unit** of an order *R* of *F* is an invertible element ε of *R*. The group of units of *R* will be denoted by U(R).

1. $\alpha \in R$ belongs to U(R) precisely if $N(\alpha) \in U(\mathbb{Z}) = \{\pm 1\}$. **2.** R contains only a finite number of non-associate elements of bounded norm. (Elements $\alpha, \beta \in R$ are called **associate** if α/β and β/α belong to R.)

3. For any constant C > 0 there exist only finitely many elements $\alpha \in R$ such that the absolute values of all conjugates of α are bounded by C.

Roots of unity

An element $\xi \in R$ is a **root of unity** precisely if all conjugates of ξ have absolute value 1.

All roots of unity of R form a finite cyclic subgroup which we denote by TU(R), in case of $R = o_F$ by TU_F .

A generator of the group TU(R) of order w will be denoted by ζ (primitive w-th root of unity).

For imaginary quadratic extensions $F(2 = n = 2r_2)$ we have U(R) = TU(R).

Structure of the unit group

The conjugates of $x \in F$ are denoted by $x^{(1)}, ..., x^{(n)}$. They are ordered in the usual way such that $x^{(j)} \in \mathbb{R}$ for $1 \leq j \leq r_1$, $x^{(j)} \in \mathbb{C} \setminus \mathbb{R}$ for $r_1 < j \leq n$ subject to $x^{(r_1+r_2+j)} = x^{(r_1+j)}$ for $1 \leq j \leq r_2$.

Theorem (Dirichlet) The unit group U(R) of R is a direct product of its torsion subgroup TU(R) with $r = r_1 + r_2 - 1$ infinite cyclic groups:

$$U(R) = TU(R) \times \langle E_1 \rangle \cdots \times \langle E_r \rangle \cong C_w \mathbb{Z}^r$$
.

The generators $E_1, ..., E_r$ form a system of **fundamental units**.

Structure of the unit group

The conjugates of $x \in F$ are denoted by $x^{(1)}, ..., x^{(n)}$. They are ordered in the usual way such that $x^{(j)} \in \mathbb{R}$ for $1 \leq j \leq r_1$, $x^{(j)} \in \mathbb{C} \setminus \mathbb{R}$ for $r_1 < j \leq n$ subject to $x^{(r_1+r_2+j)} = x^{(r_1+j)}$ for $1 \leq j \leq r_2$.

Theorem (Dirichlet) The unit group U(R) of R is a direct product of its torsion subgroup TU(R) with $r = r_1 + r_2 - 1$ infinite cyclic groups:

$$U(R) = TU(R) \times \langle E_1 \rangle \cdots \times \langle E_r \rangle \cong C_w \mathbb{Z}^r$$
.

The generators $E_1, ..., E_r$ form a system of **fundamental units**.

Regulator

We consider the logarithmic map

$$L : F^{\times} \to \mathbb{R}^r : x \mapsto (c_1 \log |x^{(1)}|, \dots, c_r \log |x^{(r)}|),$$

with constants $c_j = 1$ for $1 \le j \le r_1$ and $c_j = 2$ for $j > r_1$.

The image of the unit group L(U(R)) is a lattice of determinant

$$\operatorname{Reg}_{R} := \left| \operatorname{det} \left(\begin{array}{c} L(E_{1}) \\ \cdot \\ \cdot \\ \cdot \\ L(E_{r}) \end{array} \right) \right| =: d(L(U(R))) .$$

 Reg_R is called the **regulator** of the order R.

In case $R = o_F$ we write Reg_F instead of Reg_R .

Units $\varepsilon_1, \ldots, \varepsilon_k$ are called **independent**, if a relation

$$\varepsilon_1^{m_1}\cdots \varepsilon_k^{m_k} = 1 \ (m_i \in \mathbb{Z})$$

implies $m_1 = \ldots = m_k = 0$. Otherwise they are said to be **dependent**.

Remark $\varepsilon_1, \ldots, \varepsilon_k$ are independent if and only if $L(\varepsilon_1), \ldots, L(\varepsilon_k)$ are \mathbb{R} -linearly independent.

The computation of fundamental units is usually done by calculating a maximal system of independent units which generates a subgroup of U(R) of small index. Then this subgroup is gradually enlarged to all of U(R).

We choose suitable sets of conjugates $I = \{i_1, \ldots, i_{\mu}\} \subset \{1, \ldots, r_1 + r_2\}.$ By \tilde{I} we denote the subset of $\{1, \ldots, n\}$ containing i_1, \ldots, i_{μ} and also all $i_{\nu} + r_2$ in case $i_{\nu} > r_1$ belongs to I.

We set

$$\#\tilde{I} = \tilde{\mu}, J = \{1, \ldots, r_1 + r_2\} \setminus I, \tilde{J} = \{1, \ldots, n\} \setminus \tilde{I}.$$

 \sim

Then we calculate a sequence of elements $\{\beta_{I,k}\}_{k\in\mathbb{Z}^{\geq 0}}$ and modules $M_{I,k}$ with the following properties:

$$\begin{split} \beta_{I,0} &= 1, \ M_{I,0} := R \\ \beta_{I,k+1} \in M_{I,k}, \ M_{I,k+1} := \frac{1}{\beta_{I,k+1}} M_{I,k} \\ |\beta_{I,k+1}^{(j)}| < 1 \ \forall j \in \tilde{I}, \ |\beta_{I,k+1}^{(j)}| \ge 1 \ \forall j \in \tilde{J}, \\ \prod_{i=0}^{k+1} |N(\beta_{I,i})| \le \tilde{C} \\ \text{with a fixed constant } \tilde{C} > 0. \end{split}$$

Next we compute $\beta_{I,k+1} \in M_{I,k}$. We choose $d \ge 1$ sufficiently large, for example $d \ge 2^{n(n-1)/2} |d(R)|$. Then we set

$$\lambda_j = d$$
 for $j \in \tilde{J}, \, \lambda_j = d^{1-n/\tilde{\mu}}$ for $j \in \tilde{I}$.

For a \mathbb{Z} -Basis $\omega_1, ..., \omega_n$ of $M_{I,k}$ we define a positive definite quadratic form with attached weights:

$$T_{2,\lambda}(\mathbf{x}) = \sum_{j=1}^{n} \lambda_j^{-2} |\sum_{i=1}^{n} x_i \omega_i^{(j)}|^2$$

 $\beta_{I,k+1}$ is chosen as first basis element of a basis of $M_{I,k}$ which is LLL-reduced with respect to $T_{2,\lambda}$.

Upon detecting modules $M_{I,\mu} = M_{I,\nu}$ with indices $\mu > \nu$ we obtain a unit

$$\varepsilon = \prod_{k=\nu+1}^{\mu} \beta_{I,k}.$$

with

$$|arepsilon^{(j)}| < 1 \; orall j \in ilde{I}$$
 and $|arepsilon^{(j)}| \geq 1 \; orall j \in ilde{J}$.

These ideas can be made more efficient by using factor bases and relations, similar to class group computations.

A factor basis is a set \mathcal{B} of prime ideals of R, say,

$$\mathcal{B} = \{\mathbf{p}_1, \dots, \mathbf{p}_v\}$$
 .

By **relations** we denote elements α_i of R (or F) for which the principal ideals $\alpha_i R$ are power products of the elements of \mathcal{B} :

$$\alpha_i R = \prod_{j=1}^w \mathbf{p}_j^{\mathbf{a}_{ij}}$$

Hence, a relation is in 1-1-correspondence with an exponent vector $\mathbf{a}_i = (a_{i1}, \dots, a_{iv})$. Having found sufficiently many relations

 $\mathbf{a}_1,\ldots,\mathbf{a}_k$,

e.g. k > v, we obtain non-trivial linear presentations

$$\sum_{\mu=1}^k m_\mu \mathbf{a}_\mu \;=\; \mathbf{0} \; \left(\mathbf{m}_\mu \in \mathbb{Z}
ight) \;,$$

hence, a unit

$$\varepsilon = \prod_{\mu=1}^{k} \alpha_{\mu}^{m_{\mu}}$$

of *R*.

Clearly, we are in need of a method for proving the dependence/independence of the calculated units.

Theorem (Dobrowolsky) An element $\alpha \in o_F$ is either a root of unity or there exists a conjugate $\alpha^{(j)}$ of α subject to

$$|\alpha^{(j)}| > 1 + \frac{1}{6} \frac{\log n}{n^2}$$

Corollary 1 A unit $\varepsilon \in o_F$ is either a root of unity or its image in logarithmic space satisfies

$$\parallel L(\varepsilon) \parallel_2 > \frac{21}{128} \frac{\log n}{n^2}$$

Calculation of fundamental units

Corollary 2 If *F* is totally real then $\alpha \in o_F$ is either of the form $\cos q\pi$ ($q \in \mathbb{Q}$) or it has a conjugate $\alpha^{(j)}$ subject to

$$|\alpha^{(j)}| > 2 + \frac{1}{1152} \frac{\log^2 2n}{n^4}$$

At this stage we assume that we know TU(R) as well as r independent units $\varepsilon_1, \ldots, \varepsilon_r$ of R. If we know an upper bound for the index of

$$U := \langle TU(R), \varepsilon_1, \ldots, \varepsilon_r \rangle$$

in the full unit group U(R) then there are well known methods for enlarging U to U(R).

That index is easily seen to be

$$(U(R) : U) = \frac{d(L(U))}{d(L(U(R)))}.$$

Regulator bounds I

Since d(L(U)) can be explicitly calculated it suffices to determine a lower bound for the regulator $d(L(U(R))) = \text{Reg}_R$ in order to obtain an upper bound for that index.

$$\begin{split} \mathsf{Reg}_F & \geq & w \, \frac{(1+\gamma)(1+2\gamma)}{2} \Gamma(1+\gamma)^{r_1+r_2} \\ & \times \Gamma(3/2+\gamma)^{r_2} \, 2^{-r_1-r_2} \pi^{-r_2/2} \\ & \times \exp\left((-1-\gamma) \left((r_1+r_2) \frac{\Gamma'}{\Gamma} ((1+\gamma)/2) \right. \\ & \left. + r_2 \frac{\Gamma'}{\Gamma} (1+\gamma/2) + 2/\gamma + 1/(1+\gamma) \right) \right) \, . \end{split}$$

This estimate is reasonably good for $n \ge 6$ and for small discriminants. The values for γ lie in the interval]0,1[. (Zimmert 1981)

Regulator bounds I

Since d(L(U)) can be explicitly calculated it suffices to determine a lower bound for the regulator $d(L(U(R))) = \text{Reg}_R$ in order to obtain an upper bound for that index.

$$\begin{split} \mathsf{Reg}_{F} & \geq & w \, \frac{(1+\gamma)(1+2\gamma)}{2} \Gamma(1+\gamma)^{r_{1}+r_{2}} \\ & \times \Gamma(3/2+\gamma)^{r_{2}} \, 2^{-r_{1}-r_{2}} \pi^{-r_{2}/2} \\ & \times \exp\left((-1-\gamma) \left((r_{1}+r_{2}) \frac{\Gamma}{\Gamma}((1+\gamma)/2) \right. \\ & \left. + r_{2} \frac{\Gamma}{\Gamma}(1+\gamma/2) + 2/\gamma + 1/(1+\gamma) \right) \right) \, . \end{split}$$

This estimate is reasonably good for $n \ge 6$ and for small discriminants. The values for γ lie in the interval]0,1[. (Zimmert 1981)

Regulator bounds II

An upper bound:

$$\operatorname{Reg}_{F} < w \, 2^{2-r_{1}} (2\pi)^{-r_{2}} \left(\frac{be \log |d_{F}|}{n-1}\right)^{n-1} \sqrt{|d_{F}|}$$

for $b = (1 + \log \pi/2 + r_{2} \log 2/n)^{-1}$.
(Siegel 1969)

Let F be primitive. We put $\kappa = 4^{\lfloor n/2 \rfloor}$ in case F is totally real, else $\kappa = n^n$. Then we have:

$$\operatorname{Reg}_{R} \geq \left(\left(\frac{3(\log(|d(R)|/\kappa))^{2}}{(n-1)n(n+1) - 6r_{2}} \right)^{r} \frac{2^{r_{2}}}{n\gamma_{r}^{r}} \right)^{1/2}$$

.

(P 1977)

Examples of regulators

Already for real-quadratic number fields with discriminants of the same size the corresponding values of the regulators Reg_F can differ substantially:

d _F	4 · 82	4 · 83	4 · 86	4 · 87
Reg _F	2.8934	5.0998	9.9431	4.0250
0,				
d _F	4 · 9930	4 · 9931	9933	4 · 9934
Reg _F	23.8663	189.0783	5.0074	221.3672

Computing regulator bounds I

We choose a constant $K \ge (1+\sqrt{2})n$ and enumerate the set

$$S_{\mathcal{K}} := \{ \alpha \in \mathcal{R} \mid T_2(\alpha) < \mathcal{K} \} \\ \cup \{ \alpha \in \mathcal{R} \mid \alpha^{-1} \in \mathcal{R}, T_2(\alpha^{-1}) < \mathcal{K} \} .$$

Obviously, TU(R) is contained in S_K .

Let us also assume that S_K contains k independent units $(0 \le k \le r)$.

Computing regulator bounds II

Next we calculate

$$M_{i}^{*} = \begin{cases} \min\{C \mid \exists \varepsilon_{1}, \dots, \varepsilon_{i} \in U(R) \cap S_{K} \\ \text{indep. with } \sum_{j=1}^{n} \log^{2} |\varepsilon_{i}^{(j)}| \leq C \} \\ \text{for } 1 \leq i \leq k \\ K \quad \text{for } k+1 \leq i \leq r \end{cases}$$

and then

$$ilde{\mathcal{M}}_i := rac{n-j}{4} ext{arcosh}^2 \left(rac{\mathcal{M}_i^* - j}{n-j}
ight) \; .$$

The rational integer j is to be chosen in the interval [0, n-2] as small as possible.

Computing regulator bounds III

Lemma A unit $\varepsilon \in U_R$ with $T_2(\varepsilon) \ge M_i^*$ and $T_2(\varepsilon^{-1}) \ge M_i^*$ satisfies $\sum_{i=1}^{n} \log^2 |\varepsilon^{(j)}| \ge \tilde{M}_i$

$$\sum_{j=1} \log^2 |arepsilon^{(j)}| \geq ilde{M}_i \; .$$

From this we deduce the following lower regulator bound.

Corollary The regulator Reg_R of the order R of F satisfies

$$\operatorname{\mathsf{Reg}}_{R} \geq (ilde{\mathcal{M}}_{1} \cdots ilde{\mathcal{M}}_{r} 2^{r_{2}} n^{-1} \gamma_{r}^{-r})^{1/2}$$
 .

Enlarging subgroups I

For this we need to test units of the form $\varepsilon_0^{m_0} \cdots \varepsilon_r^{m_r}$ with $\varepsilon_0 = \zeta$, whether they are *p*-th powers for a prime number *p* smaller than the index of *U* in U(R).

At first, the elements ε_i are tested. If ε_i is not a *p*-th power, then the polynomial $t^p - \varepsilon_i \in F[t]$ is irreducible.

According to the Chebotarev Density Theorem there exists a prime ideal **q** in o_F which does not contain the discriminant of F and for which $t^p - \varepsilon_i$ remains irreducible in $o_F / \mathbf{q}[t]$.

Enlarging subgroup II

The prime number p must divide $N(\mathbf{q}) - 1$. (Otherwise, there exists $u \in \mathbb{N}$ with $pu \equiv 1 \mod (N(\mathbf{q}) - 1)$ implying $(\varepsilon_i^{q})^p = \varepsilon_i$ in o_F/\mathbf{q} in contradiction to our choice of \mathbf{q} .) It follows that p divides the order of ε_i in o_F/\mathbf{q} .

Hence, for j = i + 1, ..., r there exist unique exponents $\nu_j \in \{0, 1, ..., p - 1\}$ such that $\varepsilon_i^{\nu_j} \varepsilon_j$ is congruent to a *p*-th power modulo **q**.

We therefore replace the generating elements ε_j by $\varepsilon_i^{\nu_j}\varepsilon_j$ for $(i+1 \le j \le r)$, i.e. we set $\tilde{\varepsilon}_i = \varepsilon_i$, $\tilde{\varepsilon}_j = \varepsilon_i^{\nu_j}\varepsilon_j$.

Enlarging subgroup III

In any equation $\omega^p = \tilde{\varepsilon}_i^{m_i} \cdots \tilde{\varepsilon}_r^{m_r}$ the product $\tilde{\varepsilon}_{i+1}^{m_{i+1}} \cdots \tilde{\varepsilon}_r^{m_r}$ is congruent to a *p*-th power modulo **q**. Then also $\tilde{\varepsilon}_i^{m_i}$ must be a *p*-th power yielding $m_i = 0$.

As a consequence we need to test only, whether $\tilde{\varepsilon}_{i+1}^{m_{i+1}}\cdots\tilde{\varepsilon}_{r}^{m_{r}}$ are *p*-th powers instead of $\varepsilon_{i}^{m_{i}}\cdots\varepsilon_{r}^{m_{r}}$.

Applying this idea for i = 0, 1, ..., r - 1 (respectively i = 1, ..., r - 1in the case that ε_0 is itself a *p*-th power) we reduce the number of necessary tests for *p*-th powers from roughly p^r to at most r + 1.

Example I

We let $F = \mathbb{Q}(\rho)$ with $\rho^{19} + 2 = 0$. The Dedekind test implies $o_F = \mathbb{Z}[\rho]$. We put $\omega_i := \rho^{i-1}$ $(1 \le i \le 19)$. The discriminant of F is

 $d_F = -19^{19}2^{18} = -518630842213417245507316350976 \; .$

With a suitable factor basis and relations we calculate a system of independent units. The corresponding coefficient vectors are

$$\begin{array}{rcl} \varepsilon_1 &=& [-1,2,-1,-2,-6,2,-1,1,-2,-3,-2,2,1,0,-4,2,1,1]\\ \varepsilon_2 &=& [-15,6,7,-15,7,5,-13,8,2,-11,9,0,-9,9,-1,-7,8,-2,-5\\ \varepsilon_3 &=& [-45,44,-41,41,-38,38,-37,33,-35,33,-29,32,-29,\\ && 26,-29,26,-24,25,-23]\\ \varepsilon_4 &=& [-3,-6,-5,-1,8,8,1,-5,-5,-2,-2,1,4,6,0,-5,-5,-1,2]\\ \varepsilon_5 &=& [-7,4,-3,-1,4,-4,4,-1,-1,3,-5,2,0,-1,4,-3,1,-1,-2]\\ \varepsilon_6 &=& [17,-38,0,31,-18,-21,26,5,-29,8,23,-19,-13,24,\\ 1,-23,10,18,-16]\\ \varepsilon_7 &=& [9,2,-2,-2,-2,-2,-5,-5,-5,1,4,6,3,1,1,2,1,-3,-5]\\ \varepsilon_8 &=& [-19,15,9,-10,-3,-4,15,-2,-13,5,3,7,-10,-6,13,\\ -1,-4,-4,2]\\ \varepsilon_9 &=& [-91,-147,-84,21,44,-32,-109,-91,-2,58,28,-45,\\ -67,-9,60,67,11,-34,-15] \end{array}$$

Example II

The regulator of that system of independent units is 36273616083.86579.

Via $K = 2T_2(\omega_n)$ we obtain a lower regulator bound 433281.296, hence an upper bound of 83718 for the index.

The enlarging of the subgroup yields fundamental units

with regulator 47980973.65927 and exact index

$$(U_F : \langle -1, \varepsilon_1, \dots, \varepsilon_9 \rangle) = 756 = 2^2 3^3 7$$
.

Example of a norm equation

Let $F = \mathbb{Q}(\sqrt{10})$. Its maximal order is $o_F = \mathbb{Z}[\sqrt{10}]$ with fundamental unit $E = 3 + \sqrt{10}$ of norm -1. The ideal $2o_F$ is the square of the prime ideal $\mathbf{p} = \mathbf{2o}_F + \sqrt{10}\mathbf{o}_F$. We want to check, whether \mathbf{p} is principal. This is done by computing all $\beta \in o_F$ with absolute norm 2. Hence, we need to solve

$$|x^2 - 10y^2| = 2 \ (x, y \in \mathbb{Z})$$
.

Multiplying β by a suitable power of E we can assume that

$$1 < x + y\sqrt{10} < E$$
 .

Example of a norm equation (cont.)

Combining this inequality with the condition $(x + y\sqrt{10})(x - y\sqrt{10}) = \pm 2$ we obtain lower and upper bounds for y:

$$1 \mp \frac{2}{E} < 2y\sqrt{10} < E \mp \frac{2}{E} \ .$$

Only y = 1 satisfies these inequalities. Hence, there is no solution of that norm equation.