EXERCISES FOR LATTICES

MICHAEL E. POHST

1. Multiple choice

1. Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k} \in \mathbb{R}^{n}$ be independent. What is the dimension of the lattice $\Lambda=\mathbb{Z} \mathbf{b}_{1}+\ldots+\mathbb{Z} \mathbf{b}_{k}$?
a) n,
b) k,
c) other.
2. Let $m \in \mathbb{Z}$ with $m \geq 2$ and $\left(b_{1}, \ldots, b_{n}\right)^{\operatorname{tr}} \in \mathbb{Z}^{n}$.

Is $\Lambda=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\operatorname{tr}} \in \mathbb{Z}^{n} \mid \sum_{i=1}^{n} b_{i} a_{i} \equiv 0 \bmod m\right\}$ a lattice?
a) yes, no.
3. Let M_{1}, \ldots, M_{k} be the successive minima of a k-dimensional lattice Λ in \mathbb{R}^{n}. Does there always exist a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$ of Λ subject to $\left\|\mathbf{b}_{i}\right\|^{2}=M_{i}(1 \leq i \leq k)$? a) yes, b) no.
4. Let Λ be a lattice and $\mathbf{b} \in \Lambda$ subject to $\|\mathbf{b}\|^{2}=M_{1}$. Can \mathbf{b} be extended to a basis of Λ ?
a) yes, no.
5. Let $B_{1}, B_{2} \in \mathbb{R}^{n \times n}$ be matrices such that the columns of both generate the same n-dimensional lattice Λ. What can we say about their determinants?
a) $\operatorname{det}\left(B_{1}\right)=\operatorname{det}\left(B_{2}\right), \quad$ b) $\operatorname{det}\left(B_{1}\right)= \pm \operatorname{det}\left(B_{2}\right)$, other.

6 . Let $\Lambda=\mathbb{Z} \mathbf{b}_{1}+\ldots+\mathbb{Z} \mathbf{b}_{k}$ be a k-dimensional lattice. Let $\mathbf{b}=\beta_{1} \mathbf{b}_{1}+\ldots+\beta_{k} \mathbf{b}_{k} \in \Lambda$ with $\|\mathbf{b}\|^{2}=M_{1}$. Then one of the coefficients β_{i} is odd.
a) yes,
b) no.

2. Computations

1. Compute the Gram Schmidt orthogonal basis for

$$
\left.\mathbf{b}_{1}=(4,0,0)^{\mathrm{tr}}, \mathbf{b}_{2}=2,9,0\right)^{\mathrm{tr}}, \mathbf{b}_{3}=(1,-3,1)^{\mathrm{tr}}
$$

2. Compute a basis for the lattice

$$
\Lambda=\left\{\left(b_{1}, b_{2}, b_{3}\right)^{\operatorname{tr}} \in \mathbb{Z}^{3} \mid b_{1}+4 b_{2}-b_{3} \equiv 0 \bmod 10\right\}
$$

3. Compute all shortest vectors in a lattice Λ with Gram matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

3. Proofs

1. Let $f(x) \in \mathbb{Z}[x]$ be a monic n-th degree polynomial. Consider $R=\mathbb{Z}[x] /(f)$. Each residue class $g+(f)$ has a unique representative $g(x) \in \mathbb{Z}[x]$ of degree $<n$. Hence, each residue class can be uniquely represented by the coefficient vector of g in \mathbb{Z}^{n} :

$$
\varphi: g_{0}+g_{1} x+\ldots+g_{n-1} x^{n-1} \mapsto\left(g_{0}, \ldots, g_{n-1}\right) .
$$

Let I be an ideal of R. Show that $\varphi(I)$ is a lattice. What is the dimension of $\varphi(I)$? 2. Show that $\mathbb{Z}(1,1)^{\operatorname{tr}}+\mathbb{Z}(\sqrt{2},-\sqrt{2})^{\operatorname{tr}}$ is a 2 -dimensional lattice, but $\mathbb{Z} 1+\mathbb{Z} \sqrt{2}$ is not a lattice.
3. Let $\Lambda=\mathbb{Z} \mathbf{b}_{1}+\ldots+\mathbb{Z} \mathbf{b}_{k}$ be a k-dimensional lattice in \mathbb{R}^{n} with $n>k$. Develop an algorithm which for given $\mathbf{a} \in \mathbb{R}^{n}$ determines $\mathbf{b} \in \Lambda$ satisfying

$$
\|\mathbf{b}-\mathbf{a}\|=\min \{\|\mathbf{c}-\mathbf{a}\| \mid \mathbf{c} \in \Lambda\}
$$

4. Prove that $\gamma_{2}^{2}=\frac{4}{3}$.
