EXERCISES FOR LATTICES

MICHAEL E. POHST

1. Multiple choice

1. Let $\mathbf{b}_1, ..., \mathbf{b}_k \in \mathbb{R}^n$ be independent. What is the dimension of the lattice $\Lambda = \mathbb{Z}\mathbf{b}_1 + \ldots + \mathbb{Z}\mathbf{b}_k?$

- b) k, c) other. a) n,
- 2. Let $m \in \mathbb{Z}$ with $m \ge 2$ and $(b_1, ..., b_n)^{\text{tr}} \in \mathbb{Z}^n$. Is $\Lambda = \{\mathbf{a} = (a_1, ..., a_n)^{\text{tr}} \in \mathbb{Z}^n \mid \sum_{i=1}^n b_i a_i \equiv 0 \mod m\}$ a lattice? no.
- a) yes,

3. Let $M_1, ..., M_k$ be the successive minima of a k-dimensional lattice Λ in \mathbb{R}^n . Does there always exist a basis $\mathbf{b}_1, \dots, \mathbf{b}_k$ of Λ subject to $\|\mathbf{b}_i\|^2 = M_i$ $(1 \le i \le k)$? a) yes, b) no.

4. Let Λ be a lattice and $\mathbf{b} \in \Lambda$ subject to $\|\mathbf{b}\|^2 = M_1$. Can \mathbf{b} be extended to a basis of Λ ?

a) yes, no.

5. Let $B_1, B_2 \in \mathbb{R}^{n \times n}$ be matrices such that the columns of both generate the same *n*-dimensional lattice Λ . What can we say about their determinants?

a) $\det(B_1) = \det(B_2)$, $b)\det(B_1) = \pm \det(B_2),$ other.

6. Let $\Lambda = \mathbb{Z}\mathbf{b}_1 + \ldots + \mathbb{Z}\mathbf{b}_k$ be a k-dimensional lattice. Let $\mathbf{b} = \beta_1\mathbf{b}_1 + \ldots + \beta_k\mathbf{b}_k \in \Lambda$ with $\|\mathbf{b}\|^2 = M_1$. Then one of the coefficients β_i is odd. a) yes, b) no.

2. Computations

1. Compute the Gram Schmidt orthogonal basis for

$$\mathbf{b}_1 = (4,0,0)^{\text{tr}}, \mathbf{b}_2 = 2,9,0)^{\text{tr}}, \mathbf{b}_3 = (1,-3,1)^{\text{tr}}$$

2. Compute a basis for the lattice

$$\Lambda = \{ (b_1, b_2, b_3)^{\text{tr}} \in \mathbb{Z}^3 \mid b_1 + 4b_2 - b_3 \equiv 0 \mod 10 \} .$$

3. Compute all shortest vectors in a lattice Λ with Gram matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} .$$

3. Proofs

1. Let $f(x) \in \mathbb{Z}[x]$ be a monic *n*-th degree polynomial. Consider $R = \mathbb{Z}[x]/(f)$. Each residue class g + (f) has a unique representative $g(x) \in \mathbb{Z}[x]$ of degree < n. Hence, each residue class can be uniquely represented by the coefficient vector of gin \mathbb{Z}^n :

$$\varphi: g_0 + g_1 x + \dots + g_{n-1} x^{n-1} \mapsto (g_0, \dots, g_{n-1}).$$

Let *I* be an ideal of *R*. Show that $\varphi(I)$ is a lattice. What is the dimension of $\varphi(I)$? 2. Show that $\mathbb{Z}(1,1)^{\text{tr}} + \mathbb{Z}(\sqrt{2}, -\sqrt{2})^{\text{tr}}$ is a 2-dimensional lattice, but $\mathbb{Z}1 + \mathbb{Z}\sqrt{2}$ is not a lattice.

3. Let $\Lambda = \mathbb{Z}\mathbf{b}_1 + \ldots + \mathbb{Z}\mathbf{b}_k$ be a k-dimensional lattice in \mathbb{R}^n with n > k. Develop an algorithm which for given $\mathbf{a} \in \mathbb{R}^n$ determines $\mathbf{b} \in \Lambda$ satisfying

$$\|\mathbf{b} - \mathbf{a}\| = \min\{\|\mathbf{c} - \mathbf{a}\| \mid \mathbf{c} \in \Lambda\}.$$

4. Prove that $\gamma_2^2 = \frac{4}{3}$.