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Introduction of lattices I

Let b1, . . . ,bk ∈ Rn be linearly independent.
Definition

Λ :=

{
k∑

i=1

λibi | λ1, . . . , λk ∈ Z

}
is called a lattice of dimension k .
d(Λ) := det

(
(bi

t · bj)1≤i ,j≤k
)1/2

is called discriminant of Λ, and

Π(Λ) :=

{
x ∈ Rn | x =

k∑
i=1

ξbi, 0 ≤ ξi < 1 (1 ≤ i ≤ k)

}

is said to be the fundamental parallelotope of Λ.
We note that Π(Λ) depends on the choice of the basis b1, ...,bk,
whereas d(Λ) is independent of the choice of the basis.
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Introduction of lattices II

Lemma Let Λ′ ⊆ Λ be k-dimensional lattices with bases
a1, ..., ak, b1, ...,bk, respectively.

1. There is a matrix U ∈ Zk×k with
(a1, . . . , ak) = (b1, . . . ,bk)U.

2. d(Λ′) = | det(U)| d(Λ).

3. (Λ : Λ′) = d(Λ′)
d(Λ) .

4. d(Λ) = volk(Π(Λ)).
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Lattices are discrete

Theorem For x ∈ Rn and C > 0 there exist only finitely many
y ∈ Λ with ‖x− y‖ ≤ C .
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Different viewpoint of lattices

Lattices have the essentiell property that their bases belong to a
finite dimensional Euclidean space.
Hence, we may just require the existence of a basis b1, ..., bk in
such a Euclidean space. In it we have a scalar product 〈 , 〉. For
lattice vectors x = ξ1b1 + ...+ ξkbk , y = η1b1 + ...+ ηkbk with
ξj , ηj ∈ Z we obtain

〈x , y〉 =
∑k

i=1

∑k
j=1 ξiηj〈bi , bj〉

= (ξ1, ..., ξk)A(η1, ..., ηk)tr

with the Gram matrix A = (〈bi , bj〉) ∈ Rk×k .
We note that A is a positive definite matrix.
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Examples from Number Fields I

Let F be an algebraic number field of degree n. We introduce a
scalar product on F in the usual way:

〈 , 〉 : F × F → R : (x , y) 7→
n∑

j=1

x (j)y (j) .

By abuse of language we say that

T2(x) := 〈x , x〉

is the T2-norm of an element x ∈ F .
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Examples from Number Fields II

(i) Let R be an order of F with Z–basis b1, ..., bn. Then R
becomes an n–dimensional lattice with respect to the Gram matrix
A = (〈bi , bj〉).
(ii) Let U be the unit group of R. Considering vectors whose
coordinates are logarithms of the absolute values of the conjugates
of elements of U we turn the multiplicative structure into an
additive one for those vectors of logarithms. The image of U
becomes a lattice. (This will be made precise tomorrow.)
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Computation of short vectors I

Let A ∈ Rk×k be positive definite. We calculate an upper
triangualar matrix Q ∈ Rk×k satisfying

xt · A · x =
k∑

i=1

qii

xi +
k∑

j=i+1

qijxj

2

.

1. Set Q ← A.
2. For i = 1, . . . , k − 1 set qji ← qij , qij ←

qij
qii

(i + 1 ≤ j ≤ k) and
update Q: qµν ← qµν − qµiqiν (i + 1 ≤ µ ≤ ν ≤ k).

3. Set qij ← 0 (1 ≤ j < i ≤ k).
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Computation of short vectors II

For A ∈ Rk×k positive definite and some constant C > 0 we
calculate all 0 6= x ∈ Zk satisfying xt · A · x ≤ C .

1. Compute Q ∈ Rk×k with the previous algorithm.
2. Set i ← k ,Ti ← C ,Ui ← 0.

3. (Bounds for xi ) Set Z ←
√

Ti
qii
,Bi ← bZ − Uic and

xi ← d−Z − Uie − 1.
4. Set xi ← xi + 1. In case xi ≤ Bi go to 5.
5. Set i ← i + 1 and go to 4.
6. In case i = 1 go to 7, else set i ← i − 1,Ui ←

∑k
j=i+1 qijxj ,

Ti ← Ti+1 − qi+1,i+1(xi+1 + Ui+1)2 und go to 3.
7. For x = 0 terminate, else output x, −x, Q(x) and return to 4.
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Successive minima

Definition For i ∈ {1, . . . , k} we call

Mi := min{γ > 0 |
∃x1, . . . , xi ∈ Λ linearly independent with

‖xν‖2 ≤ γ (1 ≤ ν ≤ i)}

i-th successive minimum of the lattice Λ.

Theorem

1. There exist linearly independent y1, . . . , yk ∈ Λ satisfying
‖yi‖2 = Mi (1 ≤ i ≤ k).

2. v ∈ Λ satisfying ‖v‖2 = M1 can be extended to a basis of Λ.
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Minkowski’s Theorem

Theorem There exist constants C > 0 which depend only on k
with

M1 · . . . ·Mk ≤ C d(Λ)2

for all k-dimensional lattices Λ. The minimal constant with this
property is called Hermite’s constant and denoted by γkk .

Example Let us consider the lattice Λ whose basis is given by
the columns of the matrix:

1 0 0 0 1/2
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 1 1/2
0 0 0 0 1/2

 .
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Hadamard’s Theorem

For b1, . . . ,bk let b∗1, . . . ,b
∗
k ∈ Rn be the corresponding orthogonal

basis determined by the method of E. Schmidt:

b∗i := bi −
i−1∑
j=1

µijb
∗
j (1 ≤ i ≤ k),

µij :=
bt
i b
∗
j

b∗j
tb∗j

(1 ≤ j < i ≤ k).

Theorem

d(Λ) =
k∏

i=1

‖b∗i ‖ ≤
k∏

i=1

‖bi‖ .

Corollary d(Λ)2 ≤ M1 · . . . ·Mk .
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LLL–reduced bases

Definition A lattice basis b1, . . . ,bk is called LLL–reduced if it
satisfies the following conditions:

1. |µij | ≤ 1
2 (1 ≤ j < i ≤ k),

2. ‖b∗i + µi ,i−1b∗i−1‖2 ≥ 3
4‖b

∗
i−1‖2 (1 < i ≤ k).

Theorem A LLL–reduced basis b1, . . . ,bk satisfies:

1.
∏k

i=1 ‖bi‖ ≤ 2
1
4
k(k−1)d(Λ),

2. ‖b1‖ ≤ 2
1
4

(k−1)d(Λ)
1
k ,

3. ‖b1‖2 ≤ 2k−1‖x‖2 ∀ x ∈ Λ \ {0},
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LLL–algorithm

1. Set ci ← bi ,Ci ← ‖c∗i ‖2 (1 ≤ i ≤ k) and m← 2.
2. Set `← m − 1.
3. For |µm`| > 1

2 set

r ← sign(µm`)b|µm`|+
1

2
c, cm ← cm − rc`,

µmj ← µmj − rµ`j (1 ≤ j ≤ `− 1), µm` ← µm` − r .

For ` < m − 1, go to 5.
4. For Cm < ( 3

4 − µ
2
m,m−1)Cm−1 go to 6.
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LLL–algorithm

5. Set `← `− 1. For ` > 0 go to 3.
For m = k, terminate, else set m← m + 1 and go to 2.

6. (Exchange cm−1 and cm) Set µ← µm,m−1,C ← Cm + µ2Cm−1

and

µm,m−1 ← µ
Cm−1

C
,Cm ←

Cm−1Cm

C
,Cm−1 ← C ,

(
cm−1

cm

)
←
(

cm
cm−1

)
.

Also set (
µm−1,j

µmj

)
←
(

µmj

µm−1,j

)
(1 ≤ j ≤ m − 2),

and for i = m + 1, . . . , k eventually(
µi ,m−1

µim

)
←
(

1 µm,m−1

0 1

)(
0 1
1 −µ

)(
µi ,m−1

µim

)
.

For m > 2 set m← m − 1. Go to 2.
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Construction of a lattice from sublattices I

Let c1, . . . , ck ∈ Λ be linearly independent. For arbitrary non-zero
ck+1 ∈ Λ we calculate m1, . . . ,mk+1 ∈ Z with

k+1∑
i=1

mici = 0 (|m1|+ . . .+ |mk+1| > 0) .

Also we determine c′1, . . . , c
′
k ∈ Λ with

k+1∑
i=1

Z · ci =
k∑

i=1

Z · c′i .
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Construction of a lattice from sublattices II

Originally, this problem was solved with LLL–reduction applied to a
lattice with basis given by the columns of the matrix:



1 0 0
0 1 0 0

· · ·
· · ·

0 0 1
2λc1 · · · · 2λck 2λck+1

 .

If we choose λ > 0 sufficiently large (in dependence of the input
data) then a LLL–reduced basis contains a vector whose last n
coordinates are 0.
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Example

Solve Ax = b in integers for

A =



−8 5 7 −7 3 −7 4 9 −6
1 −2 0 −10 −4 3 8 5 2
−7 3 6 5 1 2 5 0 −6
−9 −3 4 9 −2 6 1 −10 −9
−2 1 −5 −4 3 7 −8 −8 −5
−1 1 −8 4 −8 −1 −9 8 6


and bt = (3,−1,−1,−7, 9, 8).
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MLLL–algorithm

The MLLL–algorithm is applied to the columns of the matrix
(A,b). When it terminates the last row of the transformation
matrix contains the solution:

11297648
5877935

25586565
−4243288
−13007950

7269435
−14476828

−28
0


.
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Non–integral lattices

In algorithmic algebraic number theory we would like to apply the
MLLL–algorithm also to non-integral lattices.

During interactive calculations one easily observes when a linear
combination represents 0.

A criterion for termination is not easy, however, since round-off
errors occur.
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Let b1, ...,bµ−1 be linearly independent and

Λµ =

µ∑
j=1

Zbj

be a sublattice of the considered lattice Λ. In case b∗µ 6= 0 we
obtain for the discriminant

d(Λµ) =

µ∏
j=1

‖ b∗j ‖

and for the length of a shortest vector, say y 6= 0, the estimate

‖ y ‖2 ≤ (γµµd(Λµ)2)1/µ .
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If we can get a lower bound for the first successive minimum M1 of
Λµ the estimate

Mµ
1 ≤ (γµµd(Λµ)2) = γµµ

µ∏
j=1

‖ b∗j ‖2

yields a lower bound for ‖ b∗µ ‖.

In the case of unit computations of orders in algebraic number
fields we have the following option.

The coordinates of the considered lattice vectors are logarithms of
the absolute values of the conjugates of algebraic numbers which
are no roots of unity.
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For field degrees d ≤ 2300 the best known result was proved by
Matveev in 1991:

An algebraic integer α 6= 0 of degree d ≥ 2 which is not a root of
unity has one conjugate whose absolute value is larger than

exp

(
3 log(d/2)

d2

)
.

From this we immediately obtain a lower bound for M1. Hence, the
MLLL–algorithm can also be used for calculations in lattices
coming from units (in logarithmic space) and it produces provably
correct results.
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Minkowski’s Convex Body Theorem

Let C ⊆ Rn be a convex, 0–symmetric set and Λ be an
n–dimensional lattice. Then C contains a lattice vector x 6= 0 if
one of the following conditions is satisfied:
1. vol(C ) > 2nd(Λ);
2. vol(C ) ≥ 2nd(Λ) and C is compact.
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Hermite normal form

For every matrix A = (aij) ∈ Zm×n there exists a unimodular
matrix U ∈ Zn×n such that H = H(A) = (hij) := AU is a lower
triangular matrix whose entries satisfy
1. hii ≥ 0 for 1 ≤ i ≤ min(m, n),
2. in case hii > 0 we also have 0 ≤ hij < hii for j < i .



Lattices

Free modules over principal ideal domains

Let M be a free module with basis b1, ..., bk over a principal ideal
domain R.
1. Every submodule M̃ of M is a free module of rank ≤ k.
2. Let i be a fixed index with 0 ≤ i < n. Then b1, ..., bi−1, c with
c ∈ M can be extended to a basis of M precisely if the coefficients
in the basis presentation c = γ1b1 + ...+ γkbk satisfy
gcd(γi , ..., γk) = 1.


