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Generalizations of Serre’s Conjecture

{n-dim Galois Rep.} ←→ {Arithmetic Cohomology}

The connection comes from the Hecke operators on the
cohomology.

In my research I compute the Hecke eigenvalues and then
experimentally find a corresponding Galois-representation.
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Nice Types of Cayley Tables

Consider a group G with n elements labeled 1, . . . , n such
that:

If ij ≤ n the element ij is the product of i , j .
If ij ≥ n the element ij can be anything else.

We call such a group an FLP-group.

Such groups exist for some n and not others. (Consider F×
p

and 195).
For a given n if there is a prime of the form kn + 1 such that
the kth powers of 1, . . . , n are distinct modulo kn + 1, then
there is an FLP-group of order n.

If we take n = 7 what primes that are of the form k7 + 1 will
separate the kth powers of 1, . . . , 7?

Wil Cocke Thing Wil likes to Think About



Nice Types of Cayley Tables

Consider a group G with n elements labeled 1, . . . , n such
that:

If ij ≤ n the element ij is the product of i , j .
If ij ≥ n the element ij can be anything else.

We call such a group an FLP-group.

Such groups exist for some n and not others. (Consider F×
p

and 195).
For a given n if there is a prime of the form kn + 1 such that
the kth powers of 1, . . . , n are distinct modulo kn + 1, then
there is an FLP-group of order n.

If we take n = 7 what primes that are of the form k7 + 1 will
separate the kth powers of 1, . . . , 7?

Wil Cocke Thing Wil likes to Think About



Nice Types of Cayley Tables

Consider a group G with n elements labeled 1, . . . , n such
that:

If ij ≤ n the element ij is the product of i , j .
If ij ≥ n the element ij can be anything else.

We call such a group an FLP-group.

Such groups exist for some n and not others. (Consider F×
p

and 195).
For a given n if there is a prime of the form kn + 1 such that
the kth powers of 1, . . . , n are distinct modulo kn + 1, then
there is an FLP-group of order n.

If we take n = 7 what primes that are of the form k7 + 1 will
separate the kth powers of 1, . . . , 7?

Wil Cocke Thing Wil likes to Think About



My Research Interest

Lance Everhart

Department of Mathematics and Statistics
University of North Carolina at Greensboro

May 16, 2014

Lance Everhart My Research Interest



Currently, I do not have have a thesis problem that I have decided
on. I do, however, have many interests.

Some of my interest:

Galois Theory

Cryptography

Open algebra problems

Applications of number theory and algebra

solving all the problems in Abstract Algebra by Dummit and
Foote

Lance Everhart My Research Interest



Some interesting past work of mine:

Multi-user Dynamic Proofs of Data Possession using Trusted
Hardware

Crytography and programming
Published by CODASPY

3D engine for possible future virtual tours of UNCG

Calculus application
Linear algebra based engine
Curve fitting with B-spline curves

Lance Everhart My Research Interest



Fractional Derivatives of Hurwitz Zeta Functions

Ricky Farr Joint Work With Sebastian Pauli

University of North Carolina at Greensboro

19 May 2014
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Hurwitz Zeta Functions And Their Derivatives

Fractional Derivative of Hurwitz Zeta Functions

Let s = σ + ti where σ > 1, 0 < a ≤ 1, and α > 0

ζ(α)(s, a) = (−1)α
∞∑

n=1

logα(n + a)

(n + a)s
.

Farr (UNCG) Fractional Derivatives of Hurwitz Zeta Functions 19 May 2014 2 / 3



Generalized Non-Integer Stieltjes Constants

Definition

The non-integral generalized Stieltjes Constants is the sequence of
numbers {γα+n(a)}∞n=0 with the property

∞∑

n=0

logα(n + a)

(n + a)s
=

Γ(α + 1)

(s − 1)α+1
+

∞∑

n=0

(−1)nγα+n(a)

n!
(s − 1)n, s 6= 1

Farr (UNCG) Fractional Derivatives of Hurwitz Zeta Functions 19 May 2014 3 / 3
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Class groups and elliptic units

k

H

Khk

k – imaginary quadratic field

H – Hilbert class field of k

K – any unramified, abelian extension of k

EK – unit group of K (that is, EK = O×
K )

Theorem (Greene, Hajir, 2013)

There is an optimal order of elliptic units E
satisfying [EK : E ] =

hK
[H : K ]

.

Elliptic units are special values of modular functions.

T. Alden Gassert University of Massachusetts, Amherst Class groups via elliptic units



Class groups and elliptic units

Elliptic units are special values of modular functions.

ωi =





NH/K

∏r
j=1 ∆(ps+j )

m(i,j)

∆(o)−m(i,r+1)∆(
∏r

j=1 p
m(i,j)
s+j )

1 ≤ i ≤ s

NH/K
∆(pi )

fi

∆(o)fi−1∆(p
fi
i )

s + 1 ≤ i ≤ n − 1

e2πi/wK i = n.

Theorem (Greene, Hajir, 2013)

The group Ω = 〈ω1, . . . , ωn〉 has finite index in EK given by

[EK : Ω] =
24n−1

wK/2

hK
[H : K ]

.
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Class groups and elliptic units

k

H

Khk

k – imaginary quadratic field

H – Hilbert class field of k

K – any unramified, abelian extension of k

EK – unit group of K (that is, EK = O×
K )

Theorem (Greene, Hajir, 2013)

There is an optimal order of elliptic units E
satisfying [EK : E ] =

hK
[H : K ]

.

Elliptic units are special values of modular functions.

G-H produce units from quotients of the Dedekind eta function.

Code: www.math.umass.edu/~gassert/units.txt

T. Alden Gassert University of Massachusetts, Amherst Class groups via elliptic units



Current work

k

H

Khk

Theorem (Greene, Hajir, 2013)

There is an optimal order of elliptic units E
satisfying hK = [H : K ][EK : E ].

Note that hH = [EH : E ].

Goal: Identify unusual class groups (e.g., large p-rank).

When hk = 2p, it is unlikely that hH is even.

hk = 6: hH is even in 7 out of 51 cases

hk = 10: hH is even in 0 out of 64 cases

hk = 14: hH is even in 0 out of 39 cases checked (89 total)

T. Alden Gassert University of Massachusetts, Amherst Class groups via elliptic units
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Let K/Q be a Galois number field with G = Gal(K/Q). Let
ρ : G → GLn(C) be a representation.
The Artin L-Function is defined as

L(s, ρ,K/Q) =
∏

p

det(1− ρ(σp) |V Ip p−s)−1

where σp is a Frobenius automorphism and V Ip is the subspace of
the representation fixed by inertia subgroup Ip.

Paula Hamby, Department of Mathematics and StatisticsUniversity of North Carolina at Greensboro Artin L-function Defined 2/3



The Dedekind Zeta function is defined as

ζK (s) =
∞∑

a

(N (a)s)−1 =
∏

p

(1−N (p)−s)−1

where the product is taken over all non-zero prime ideals in OK .

Theorem (Artin)

ζK (s) =
∏

ρ

L(s, ρ,K/Q)dim ρ

where the product is taken over all irreducible representations.

Paula Hamby, Department of Mathematics and StatisticsUniversity of North Carolina at Greensboro Artin L-function Defined 3/3
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Algebraic Modular Forms

What are algebraic modular forms?

These are objects defined by purely algebraic/arithmetic means (without
analytic hypotheses) and are intimately related to various types of modular
forms.

My interest in these stems primarily from the following deep theorem:

Theorem (H. (2013))

ALGEBRA = EASY

ANALYSIS = HARD

Seriously though, algebraic modular forms provide fertile ground for
studying a wide array of beautiful mathematics, including analysis!

In particular, I’ve recently been studying orthogonal algebraic modular
forms. These arise from (totally) positive definite quadratic forms.

Jeffery Hein (Dartmouth College) My Research Interests May 19th, 2014 2 / 3
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Example: Ternary Quadratic Forms

Let Q(x , y , z) = x2 + 4y2 + 4z2 + 3yz − xy be a quadratic form.

For each prime p, there are various forms related to Q called p-neighbors.

Utilizing these p-neighbors, we compute various Hecke matrices Tp.

For the Q above, we have

T2 =

(
2 2
1 1

)
,T5 =

(
5 2
1 4

)
,T7 =

(
4 8
4 0

)
,T11 =

(
7 10
5 2

)
, . . .

The eigenvalues associated to the column vector (1,−1) are

a2 = 0, a5 = 3, a7 = −4, a11 = −3, a13 = −1, . . .

In other words, traces of Frobenius for the elliptic curve (51a1)

E/Q : y2 + y = x3 + x2 + x − 1.

Jeffery Hein (Dartmouth College) My Research Interests May 19th, 2014 3 / 3
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What do I do?

The dream: “All motives are automorphic.”

Slightly more precisely, let X be a variety over a number field K ,
and ζX (s) its (Hasse–Weil) Zeta function. For the zeta function
(or the variety) to be “automorphic,” it should be equal to some
(product of) L-functions of some automorphic forms, i.e.

ζX ,K (s) :=
∑

p prime

exp


∑

n≥1

#X (Fn
q(p))

n
tn)


 ?

=
∏

π

L(π, s).

(Really The Only) Example. Modularity of elliptic curves E over
Q or real quadratic extensions.

Main Project: Compute the zeta functions of Shimura varieties
attached to GSp(2n) (with parahoric level structure) and
determine whether they are automorphic.



Cool things that I’ve been trying to understand

1. Applying a modified Faltings–Serre–Livné method to get some
modularity results for (Galois representations) in some
non-regular cases. (Here “non-regular” means: don’t have
hp,q ≤ 1.)

I If you (or somebody you know) have some candidate pairs of
abelian surfaces and Siegel modular forms, please tell me! I
may be able to check that for you.

I If you know of easy ways to compute Frobenii or “exhaustion”
results related to such methods, please talk to me!

2. The picture on the next slide.



Graph of Slopes of p-adic Modular Forms

Teaser: There’s some strange behavior e.g. at p = 59 that is
related to [a different notion of] irregularity of the image of the
associated Galois representations.



Modularity of Elliptic Curves over Quartic 
CM Fields

UNCG Summer School in Computational Number Theory, 2014

Andrew Jones, University of Sheffield



The Modularity Theorem
• The  Modularity  Theorem  plays  a  key  role  in  the  proof  of  Fermat’s  Last  Theorem,  and  establishes  a  

connection between rational elliptic curves and modular forms in the following manner: 

• It was known previously how to attach such Galois representations to each of these objects.  The 
theorem states that, given an elliptic curve, the associated Galois representation is equivalent to one 
arising from a modular form.

• In particular, the traces of these representations at Frobenius elements of the absolute Galois group 
are equal.  These traces are familiar to us: for elliptic curves they are the values ap(E) obtained by 
looking at reductions of the curve over finite fields, while for modular forms they are the 
eigenvalues ap(f) of the Hecke operators Tp.

Weight 2 cuspidal Hecke eigenformsRational Elliptic curves

Two-dimensional ℓ-adic Galois 
representations



• Langlands’  conjectures  predict  that  the  same  should  hold  over  any number field, not just the rationals
(where we replace modular forms, which rapidly become very, very ugly, with the equivalent notions of 
automorphic forms, or automorphic representations).

• It’s  long  been  known  how  to  attach  Galois  reps  to  elliptic  curves  defined  over  a  number  field,  and  we  
know a fair amount about modular forms over quadratic and totally real fields (in fact, we now know 
that modularity holds for all real quadratic fields!).

• Recently,  it’s  been  proven  that  one  can  attach  Galois  reps  to  automorphic representations defined over 
CM fields,  which  are  totally  imaginary  quadratic  extensions  of  totally  real  fields,  so  we’d  like  to  see  if  
we can find modular elliptic curves.

• Methods exist to compare Galois reps, which as input require only the traces at finitely many Frobenius
elements.  Since we can work out the local data for an elliptic curve easily, the task boils down to 
computing Hecke eigenvalues.

• A method for this exists (at least for quartic CM fields).  It turns out that modular forms over a field F
“live  in”  the  cohomology of the arithmetic group ResF/Q(GL2), and that the Hecke action translates to 
this setting.  

• The group cohomology turns out to be equivalent to the homology of a combinatorial cell complex 
(equipped with an action of ResF/Q(GL2)) which can be modelled by a finite sub-complex, which has 
connections with a space of binary Hermitian forms over the field F.

• Unfortunately the Hecke action  doesn’t  preserve  this  sub-complex, but Paul Gunnells and Dan Yasaki
have  come  up  with  an  algorithm  to  “break  down”  elements  of  the  general  complex  so  that  they  fit  into  
the smaller space, thus allowing us to compute the action of the Hecke operators, and prove modularity 
of specific elliptic curves.
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Dirichlet series and Distrubitons of Totally Positive Integers

Counting Elements of Given Trace

Given totally real number field K and a fractional ideal a of K . Let Na be
the number of totally positive elements in a with trace a.

Geometric Estimate

Natural geometric estimate of Na: ra=the volume of the intersection in
a⊗ R of the totally positive cone with hyperplane Trace=a.

Tianyi Mao (CUNY) Dirichlet Series and Distributions May 13, 2014 2 / 3



Dirichlet Series

Let σ1, . . . , σn be all embeddings of K , σi (α) = α(i). Let
v(α) =

∏n
i=1 sgn(α(i))ei where ei = 0 or 1, and let

Ψ(s, v , a) =
∑

06=α∈a
v(α)

(|α(1)|+...+|α(n)|)s . Summing over all 2n choices of v :

∑

v

Ψ(s, v , a) = 2n
∑

0<<α∈a
Tr(α)−s = 2n

∑

a>0

Naa
−s (1)

Theorem (Ash & Friedberg, 2005)

For ε > 0,
∑

a<X (Na − ra) = O(X n−1− 2n−2
2n+1

+ε)
Note: When K = Q(D), the Dirichlet series

∑
(Na − ra)a

−s describes the distribution of fractional parts of m
√
D.(Hecke)

My Interests

Ash and Friedberg did that by studying the general form of the Ψ above:
Φ(s, y , p, k , b) =

∑
0 6=α∈b

p(α)

(
∑n−1

i=1 |α(i)|kyk
i y

k/n
n +|α(n)|kyk/n

n )s

Question: How do we generalize their result to non-totally real case?

Tianyi Mao (CUNY) Dirichlet Series and Distributions May 13, 2014 3 / 3
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Ramanujan Congruences

Let p(n) be the partition function. Recall that

G (q) :=
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
,

i.e., q
1
24

1
G(q) is the Dedekind eta-function.

Theorem (Ramanujan, 1919)

p(5n + 4) ≡ 0 (mod 5)
p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)

Theorem (Ahlgren & Boylan, Inventiones 2003)

These are the only such congruences for the partition function.

James Martin Ramanujan-type congruences
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Ramanujan-type Congruences

An elliptic modular form with coefficients a(n) has a Ramanujan
congruence at b (mod p) if a(pn + b) ≡ 0 (mod p).

This notion
has been extended to Jacobi forms and Siegel modular forms.

Richter (2008-09): Jacobi forms at b ≡ 0 (mod p).

Choi, Choie, and Richter (2011): Siegel modular forms of degree 2
at b ≡ 0 (mod p).

Dewar and Richter (2010): Jacobi forms and Siegel modular forms
of degree 2 at b 6≡ 0 (mod p).

Raum and Richter (2014): Jacobi forms of higher degree and
Siegel modular forms of arbitrary degree at b ≡ 0 (mod p).

James Martin Ramanujan-type congruences
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Non-vanishing of fundamental Fourier coefficients
of Siegel modular forms

Jolanta Marzec

University of Bristol

UNCG Summer School, May 2014
Computational Number Theory: Modular Forms and Geometry
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Classical modular form:

f

(
az + b

cz + d

)
=(cz + d)k f (z) finite at cusps of Γ,

(
a b
c d

)
∈ Γ ⊂ SL2(Z)

Siegel modular form of degree 2:

F ((AZ + B)(CZ + D)−1) = det(CZ + D)kF (Z ) for
(
A B
C D

)
∈ Γ(2) ,

Z = Z t , ImZ > 0, where Γ(2) a congruence subgroup of Sp4(Q), e.g.

Γ
(2)
0 (N) :=

{(
A B
C D

)
∈ Sp4(Z) : C ≡ 0 (modN)

}
,

Γpara(N) :=








∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗


 ∈ Sp4(Q) : ∗ ∈ Z




.

F (Z ) =
∑

T=T t ,T≥0
half-integral

a(F ,T )e2πitr(TZ)
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Why fundamental Fourier coefficients?

(Those a
(
F ,
(

a b/2
b/2 c

))
for which D := b2 − 4ac < 0 is a fundamental

discriminant).

(A version of) Böcherer’s conjecture: If F is a newform w.r.t. Γ
(2)
0 (N)

(or Γpara(N)) and D is a fundamental discriminant, then:

∑

{T>0:disc(T )=D}/∼
a(F ,T )Λ−1(T ) 6= 0 =⇒ L(1/2, πF × θΛ) 6= 0 ,

where T ∼ T ′ if T ′ = AtTA for some A ∈ SL2(Z) (or Γ0(N)),
and θΛ(z) =

∑
06=a⊂OQ

√−D
Λ(a)e2πiN (az).

L-function of a paramodular form is equal to some L-function of an
abelian surface over Q (paramodular conjecture).

Their non-vanishing is related to the existence of global Bessel models
of fundamental type for Siegel cusp forms.
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The Computation of Galois

Groups over Local Fields

Jonathan Milstead, UNCG



1. Splitting Field Method

W

Qp

wildly ramified

g(x) = xe0 � ⇣rp

T = Qp(⇣, eo
p
⇣rp)

normal, tamely ramified
extension given by

extension of
degree pm

unramified extension degree f
given by cyclotomic polynomial,
⇣ is primitive root of unity.

p-adic numbers

U = Qp(⇣)

A variation of an OM Algorithm is used

See upcoming paper (Milstead, Pauli, Sinclair)

2.Ramification Polygon: Newton polygon

of
'(↵x + ↵)

↵n
. Interested in 1 or 2 segment

cases.
1



Polynomials over Q.

3. Stauduhar’s method (1973):

• Key Challenge: finding a G-relative H-
invariant F 2 Z[X1, ..., Xn], i.e., F so
that StabGF := {� 2 G | F� = F} = H

where H < G 6 Sn

• Uses resolvents
RF :=

Y

�2G//H

(T � F�(↵1, ...,↵n)) 2 Z[T ]

to see if Gal(f) 6 Hg. Global (G = Sn)
and Relative.

4. Fieker, Kluners

• General method for computing invari-
ants of large degree.

• The ”first” practical degree indepen-
dent algorithm.

2



Congruences, Galois Representations,
Discriminants, and Modular Forms

UNCG Summer School 2014
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I Partial weight one Hilbert modular forms
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I Statistics of discriminant of polynomials over finite fields

Table : Number of Monic Square Free Polynomials over F7 with
Given Discriminant

∆ Degree 2 Degree 3 Degree 4 Degree 5

1 7
2 7
3 7
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Interests

I Congruences and classical modular forms

I Partial weight one Hilbert modular forms

I Ethereal modular forms

I Statistics of discriminant of polynomials over finite fields

Table : Number of Monic Square Free Polynomials over F7 with
Given Discriminant

∆ Degree 2 Degree 3 Degree 4 Degree 5

1 7 56 392 2041
2 7 14 98 2041
3 7 21 147 2041
4 7 77 539 2041
5 7 84 588 2041
6 7 42 294 2041

Total 42 294 2058 14406
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I Since ∆g = −27y2 − 4x3, we are counting the number of
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I Consider an arbitrary degree 3 monic polynomial
f = z3 + w · z2 + x · z + y ∈ Fp[z ] where 2, 3 - q.

I By sending z 7→ z−w
3 , we can eliminate the z2 term and leave

∆f unchanged. Therefore, consider g = z3 + x · z + y .

I Since ∆g = −27y2 − 4x3, we are counting the number of
solutions to 1 = −27y2 − 4x3 over Fp, or y2 + y = x3 − 7.

I The elliptic curve E : y2 + y = x3 − 7 has conductor 27 and
CM by ζ3 : (x , y) 7→ (ζ3x , y). It’s associated modular form
h ∈ M2(Γ0(27)) is
h = q − 2q4 − q7 + 5q13 + 4q16 − 7q19 − 5q25 + 2q28 + . . .

I Therefore, for a prime p, if ap is the pth coefficient of f , then
#E (Fp) = p − ap + 1 (but we don’t want to count the point
at infinity). So the number of solutions to ∆g = 1 should be
p − ap, and the number of solutions to ∆f = 1 should be
p2 − ap · p.
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I Consider an arbitrary degree 3 monic polynomial
f = z3 + w · z2 + x · z + y ∈ Fp[z ] where 2, 3 - q.

I By sending z 7→ z−w
3 , we can eliminate the z2 term and leave

∆f unchanged. Therefore, consider g = z3 + x · z + y .

I Since ∆g = −27y2 − 4x3, we are counting the number of
solutions to 1 = −27y2 − 4x3 over Fp, or y2 + y = x3 − 7.

I The elliptic curve E : y2 + y = x3 − 7 has conductor 27 and
CM by ζ3 : (x , y) 7→ (ζ3x , y). It’s associated modular form
h ∈ M2(Γ0(27)) is
h = q − 2q4 − q7 + 5q13 + 4q16 − 7q19 − 5q25 + 2q28 + . . .

Table : Number of Degree 3 Polynomials over Fp with ∆ = 1

p 5 7 11 13 17 19

# 52 72 − (−1) · 7 112 132 − 5 · 13 172 192 − (−7) · 19
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Introduction

My thesis research with Jeremy Rouse has involved the study
of number fields and their defining polynomials.

Given a number field K , how does one find polynomials f (x)
that have a small number of nonzero terms? Specifically, is it
possible to make this method work to classify all the
trinomials that generate a given field?

We have made progress with the specific case where
f (x) = x5 + x + 3.

We have proven that if the number field, K = Q[α], is defined
by f (x) = x5 − 5x + 12, where α is a root of f , then f is the
only trinomial of the form x5 + ax + b defining K .

Jesse Patsolic UNCG Summer 2014



Introduction

My thesis research with Jeremy Rouse has involved the study
of number fields and their defining polynomials.

Given a number field K , how does one find polynomials f (x)
that have a small number of nonzero terms? Specifically, is it
possible to make this method work to classify all the
trinomials that generate a given field?

We have made progress with the specific case where
f (x) = x5 + x + 3.

We have proven that if the number field, K = Q[α], is defined
by f (x) = x5 − 5x + 12, where α is a root of f , then f is the
only trinomial of the form x5 + ax + b defining K .

Jesse Patsolic UNCG Summer 2014



Introduction

My thesis research with Jeremy Rouse has involved the study
of number fields and their defining polynomials.

Given a number field K , how does one find polynomials f (x)
that have a small number of nonzero terms? Specifically, is it
possible to make this method work to classify all the
trinomials that generate a given field?

We have made progress with the specific case where
f (x) = x5 + x + 3.

We have proven that if the number field, K = Q[α], is defined
by f (x) = x5 − 5x + 12, where α is a root of f , then f is the
only trinomial of the form x5 + ax + b defining K .

Jesse Patsolic UNCG Summer 2014



Introduction

My thesis research with Jeremy Rouse has involved the study
of number fields and their defining polynomials.

Given a number field K , how does one find polynomials f (x)
that have a small number of nonzero terms? Specifically, is it
possible to make this method work to classify all the
trinomials that generate a given field?

We have made progress with the specific case where
f (x) = x5 + x + 3.

We have proven that if the number field, K = Q[α], is defined
by f (x) = x5 − 5x + 12, where α is a root of f , then f is the
only trinomial of the form x5 + ax + b defining K .

Jesse Patsolic UNCG Summer 2014



CK =





n4 = −5a + 4e = 0

n3 = 10a2 − 16ae + 4bd + 15be + 2c2 + 15cd + 6e2 = 0

n2 = −10a3 + 4b2c − 6ac2 + 15bc2 − 12abd + 15b2d

− 45acd − 4cd2 − 9d3 + 24a2e − 45abe + 4c2e

+ 8bde + 6cde − 45d2e − 18ae2 + 33be2 − 45ce2 + 4e3 = 0.

Magma was unable to compute the curve quotient by the
automorphism group. Doing this computation manually, we obtain
a map whose image is a cubic curve that can then be transformed
into an elliptic curve:

E : y2 = x3 + a4x + a6.

E has positive rank and the methods we use are inadequate to
determine CK (Q). We may possibly be able to use elliptic curve
Chabauty in the future.

Jesse Patsolic UNCG Summer 2014
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Summer School in Computational Number Theory

Algorithms for Local Fields

OM Algorithms – Round 4, Montes algorithm, Polynomial
factorization and other applications
Galois groups
Construction of Extensions with given invariants – Krasner, Class
fields ...

Sebastian Pauli (UNCG) Interests 2 / 3



Summer School in Computational Number Theory

Zeros of Derivatives of the Riemann Zeta function

Zero free regions

M=2

M=3

�

t

10 20 30 40 50

250

500

750

1000

(with Thomas Binder and Filip Saidak)

Sebastian Pauli (UNCG) Interests 3 / 3
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The Representation Problem

A polynomial H(x) with rational coefficients is said to represent an
integer a if the Diophantine equation

H(x) = a

has a solution over the integers.

H(x)− c represents a ⇔ N + v represents Q(v) + a.

Research Interests
Finding ways to extend methods and results from the theory of
quadratic forms to apply to the realm of quadratic polynomials.



The Representation Problem

A polynomial H(x) with rational coefficients is said to represent an
integer a if the Diophantine equation

H(x) = a

has a solution over the integers.
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Using Quadratic Forms to Study Quadratic Polynomials

A quadratic polynomial is regular if it represents all of the integers
which are represented over Zp for all primes p as well as over
Z∞ := R.

Goal:
Use cosets of quadratic lattices to study regular quadratic
polynomials.

Theorem (R- 2013)

Given a fixed conductor, there are only finitely many
semi-equivalence classes of positive regular quadratic polynomials
in three variables.
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Topics of interest:

Distribution of prime numbers:
1) Chebyshev-type results (their generalizations and limits)
2) Prime Number Theorem (error term estimates)
3) Twin primes, maximal gaps between primes

Riemann zeta function:
1) zero-free regions of ζ(s)
2) monotonicity results inside the critical strip
3) zeros of higher derivatives of the Riemann zeta function

Arithmetical functions:
1) Erdős-Kac type theorems
2) Extreme values of multiplicative functions
3) Perfect Numbers
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Let F be a real quadratic field, OF the ring of integers in F, and
m an integral ideal in OF with m 6= (1). There are two infinite
primes associated to the two distinct embeddings of F into R,
denoted by p

(1)
∞ and p

(2)
∞ . Let H2 := H(mp

(2)
∞ ) denote the ray

class group modulo mp
(2)
∞ , which is a finite abelian group.

Given a class C ∈ H2, there is an associated partial zeta
function ζ(s, C) = ∑

Na−s, where the sum runs over all integral
ideals (necessarily rel. prime to m) lying within the class C. The
function ζ(s, C) has a meromorphic continuation to C with
exactly one (simple) pole at s = 1. We have ζ(0, C) = 0 for all
C ∈ H2, but ζ ′(0, C) 6= 0 (if certain conditions are met).



First crude statement of Stark’s conjecture: e−2ζ
′(0,C) is an

algebraic integer, indeed this real number is conjectured to be a
root of a palindromic monic polynomial

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ a2x
2 + a1x+ 1 ∈ Z[x].

For this reason, e−2ζ
′(0,C) is called a “Stark unit”. By class field

theory, there exists a ray class field F2 := F(mp
(2)
∞ ) with the

following special property: F2 is an abelian extension of F with
Gal(F2/F) ∼= H2. Stark’s conjecture states more precisely that
e−2ζ

′(0,C) ∈ F2 for all C ∈ H2.
This fits the general theme of Hilbert’s 12th problem: Construct
analytic functions which when evaluated at “special” points
produce algebraic numbers which generate abelian extensions
over a given base field.
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Introduction

Let H denote the upper half plane. Let Γ = SL(2,Z), Γ acts on
H ∪ R ∪ {∞} by linear fractional transformations. Elements in Γ
may be classified as parabolic, elliptic or hyperbolic according
to their types of fixed points: parabolic elements have one real
fixed point, hyperbolic two real fixed points. Let k be a positive
even integer and f : H −→ C a holomorphic function. We define
the slash operator, |k by

(f |kγ)(z) = (cz + d)−k f (z).

f is a weight k modular form if

1. (f |kγ)(z) = f (z) for all γ ∈ Γ;
2. f is bounded at infinity.
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Modular Forms

Let f ∈ Sk (Γ), Γ = SL(2,Z) and η, η′ be a hyperbolic pair.

Set
Γη = {γ ∈ SL(2,Z) : γη = η and γη′ = η′}, with Γη =< ±γη >.
Let ση ∈ SL(2,R) satisfy

γηση = σηA.

Then the hyperbolic fourier expansion of f at the hyperbolic
pair η, η′ is

(f |kση)(w) =
∞∑

n=−∞
anw−

k
2 + 2πin

λη .
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We assume η =
√

m, m squarefree. Let γη =
( a0 mc0

c0 a0

)
where

(a0, c0) is the fundamental solution of Pell’s equation:
x2 −my2 = 1.

Γη =< ±γη > Let ση be the diagonalizing
matrix for γη that is

γηση = σηA,

where A =
(
εm 0
0 εm−1

)
.
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Hyperbolic Poincaré Series

w−
k
2 + 2πin

λη gives rise to a Poincaré series (z = σηw), as follows:

Pη,n(z) =
∑

γ∈(Γη\Γ)

(ση
−1γz)

− k
2 + 2πin

λη

j(ση−1γ, z)k .



Explicit Fourier Coefficients

The nth (parabolic) fourier coefficient of the (parabolic)
Poincaré series, Pn(z), is given by

aν(n, k) = (2πi)k
∞∑

c=1

k(n, ν, c)

c

(ν
n

) k−1
2 Jk−1

(
4π
√

nν
c

)
.

(Kloosterman Sum) The sum

k(n, ν, c) =
∑

d mod c
gcd(c,d)=1

e
2πi(nd+νd)

c dd ≡ 1 mod c

is called a Kloosterman sum.
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Pη,n(z) =
∑

γ∈(Γη\Γ)

(ση
−1γz)

− k
2 + 2πin

λη

j(ση−1γ, z)k .

Pη,n(z) =
∞∑

l=1

an,hyp(l)e2πilz ,



Theorem
(O’Sullivan & T) For n ∈ Z, the nth parabolic Fourier coefficient
of the hyperbolic Poincaré series Pη,ν is given by

an,hyp(l) =
∑

N∈Rm

1

N
k
2

Sη(n, l ; N)Iη(n, l ,
N

2
√

m
).

Here Rm = {N : N represented by x2 −my2},



Sη(n, l ; N) =
∑

δ∈FN

(
δ

δ′
2
√

m
N(δ)

) 2πin
λη

e
2πiβ0

′
δ′ .

Iη(ν,n; r) :=

∫ ∞+iy

−∞+iy

(
r − 1

t

)2πiν/`η e−2πint

(t − 1
r )k/2tk/2

dt (r ∈ R 6=0, y > 0, k > 2).

We are currently trying to understand the properties of the
above functions.
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Introduction

For a positive non-square discriminant D and a real number x,
let QD(x) be the set of all quadratic functions
Q = Q(x) = ax2 + bx + c which satisfy the following
conditions:

The three quantities a, b, and c are integers.

a < 0

b2 − 4ac = D

Q(x) > 0

For an even integer k ≥ 2 , Zagier (1999) defines a function
Fk,D : R→ R,

Fk,D(x) =
∑

Q∈QD(x)

Q(x)k−1.

Ka Lun Wong UNCG Summer School Sums of Quadratic Functions with two discriminants
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Zagier (1999) From quadratic functions to modular

functions:

For every fixed even k, the functions Fk,D(x) for various D
span a space of finite dimension(

[
k
6

]
+ 1).

The average value of Fk,D(x) equals ζD(1−k)
2ζ(1−2k) .

The function Tx(z) :=
∑

D Fk,D(x)e2πiDz is a modular form of
weight k + 1

2
on Γ0(4) for any real number x.

Zagier mentioned a way to generalize this function for both
odd and even k. We use a different approach to generalize this
function that works for both even and odd k.

Ka Lun Wong UNCG Summer School Sums of Quadratic Functions with two discriminants



Zagier (1999) From quadratic functions to modular

functions:

For every fixed even k, the functions Fk,D(x) for various D
span a space of finite dimension(

[
k
6

]
+ 1).

The average value of Fk,D(x) equals ζD(1−k)
2ζ(1−2k) .

The function Tx(z) :=
∑

D Fk,D(x)e2πiDz is a modular form of
weight k + 1

2
on Γ0(4) for any real number x.

Zagier mentioned a way to generalize this function for both
odd and even k. We use a different approach to generalize this
function that works for both even and odd k.

Ka Lun Wong UNCG Summer School Sums of Quadratic Functions with two discriminants



Zagier (1999) From quadratic functions to modular

functions:

For every fixed even k, the functions Fk,D(x) for various D
span a space of finite dimension(

[
k
6

]
+ 1).

The average value of Fk,D(x) equals ζD(1−k)
2ζ(1−2k) .

The function Tx(z) :=
∑

D Fk,D(x)e2πiDz is a modular form of
weight k + 1

2
on Γ0(4) for any real number x.

Zagier mentioned a way to generalize this function for both
odd and even k. We use a different approach to generalize this
function that works for both even and odd k.

Ka Lun Wong UNCG Summer School Sums of Quadratic Functions with two discriminants



Zagier (1999) From quadratic functions to modular

functions:

For every fixed even k, the functions Fk,D(x) for various D
span a space of finite dimension(

[
k
6

]
+ 1).

The average value of Fk,D(x) equals ζD(1−k)
2ζ(1−2k) .

The function Tx(z) :=
∑

D Fk,D(x)e2πiDz is a modular form of
weight k + 1

2
on Γ0(4) for any real number x.

Zagier mentioned a way to generalize this function for both
odd and even k. We use a different approach to generalize this
function that works for both even and odd k.

Ka Lun Wong UNCG Summer School Sums of Quadratic Functions with two discriminants



Applications of Reduction Theory to
Automorphic Forms

Dan Yasaki

The University of North Carolina Greensboro

May 19–23, 2014
UNCG Summer School 2014
Modular forms and Geometry

Dan Yasaki Applications of Reduction Theory to Automorphic Forms 1 / 3



Modular forms over Q
Cusp forms (f (z) =

∑
anqn) and Hecke operators can be

described cohomologically

H1(Γ0(N)\h;C) ' S2(N)⊕ S2(N)⊕ Eis2(N).

Figure : Upper half plane tessellated by ideal triangles corresponding
to perfect binary quadratic forms.
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Generalization in an example

Many of the ideas and techniques have analogues in the
number field setting.

Let F be the cubic field of discriminant −23 with maximal order
OF .

GL2 /Q GL2 /F
Z OF

subgroup of GL2(Z) subgroup of GL2(OF )
h h× h3 × R

one triangle nine 6-dimensional polytopes
modular symbols 1-sharblies
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