ALGEBRAIC MODULAR FORMS – EXERCISES AND ACTIVITIES II

MATTHEW GREENBERG

- (1) Let E = Q + Qi + Qj + Qk with ij = k = -ji.
 (a) Suppose i² = j² = 1. Show that E ≅ M₂(Q).
 (b) Suppose i² = -1 and j² = -p with p ≡ 3 (mod 4). Show that the E you get for different p are nonisomorphic. (Hint: Consider discriminants.)
 - (c) Suppose $i^2 = -1$ and $j^2 = -p$ with $p \equiv 1 \pmod{4}$. Show that $E \cong \mathbf{H}$.
- (2) (a) Let E be the quadratic field extension of F obtained by adjoining a root α of the irreducible quadratic polynomial f(x). Let K be a field extension of F in which f(x) factors. Show that $E \otimes_F K \cong K \oplus K.$
 - (b) Show that $\mathbf{H} \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \cong \mathrm{M}_2(\mathbb{Q}(i)).$

(3) Suppose
$$(V,h) = (E^n, \sum_{i=1}^n x_i \overline{y}_i)$$
. Show that

$$GU(V,h) = \{A \in GL_n(E) : A\overline{A}^t = cI \text{ for some } c \in F^{\times}\},\$$
$$U(V,h) = \{A \in GL_n(E) : A\overline{A}^t = I\}.$$

- (4) (a) Suppose $E = F \times F$ and $(V, h) = (E^n, \sum_{i=1}^n x_i \overline{y}_i)$. Show that U(V, h) is canonically isomorphic to $\operatorname{GL}_n(F)$.
 - (b) (Lengthy) Suppose $E = M_2(F)$ and let (V, h) be a Hermitian E-space of E-rank n. Let $e_{11} =$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and let $V' = e_{11}V$. Show that $\dim_F V' = 2n$. Show that there is a unique function $h': V' \times V' \longrightarrow F$ such that $h(x, y) = h'(x, y)e_{12}$ for all $x, y \in V'$. Show that h' is symplectic and conclude that (V', h') is a symplectic space of dimension 2n. Show that $(V, h) \mapsto (V', h')$ extends to an equivalence of the category of Hermitian E-spaces with the category of symplectic F-spaces (i.e., Explain how to map morphisms). Conclude that there is a canonical isomorphism $\operatorname{GU}(V,h) \to \operatorname{GSp}(V',h')$ that restricts to an isomorphism $\operatorname{U}(V,h) \to \operatorname{Sp}(V',h')$.