Finding p-class towers of length 3

Michael Bush
Washington and Lee University

(joint work with Daniel Mayer)

May 25, 2013

Basic definitions

Let K be a number field.
Hilbert class field tower of K

$$
K=K_{0} \subseteq K_{1} \subseteq \ldots \subseteq K_{n} \subseteq \ldots
$$

where $K_{n+1}=$ maximal unramified abelian extension of K_{n}.

Hilbert p-class field tower of K

$$
K=K_{0} \subseteq K_{1} \subseteq \ldots \subseteq K_{n} \subseteq \ldots
$$

where $K_{n+1}=$ maximal unramified abelian p-extension of K_{n}.

Motivation

Let \mathcal{O}_{K} be the ring of integers of K.
\mathcal{O}_{K} is sometimes a UFD (Unique Factorization Domain) and sometimes not.

Embedding Problem

Does there always exist a finite extension L / K such that \mathcal{O}_{L} is a UFD?

Motivation

Proposition

There exists L / K finite with \mathcal{O}_{L} a UFD \Leftrightarrow Hilbert class field tower of K is finite.

Proof.

(\Leftarrow) If the $H C F$ tower is finite then $C l\left(K_{n}\right)=1$ for some n, so we can take $L=K_{n}$.
(\Rightarrow) If \mathcal{O}_{L} is a UFD then we have $C l(L)=1$. This means that L does not have any nontrivial unramified abelian extensions and so $L=L K_{1} \supseteq K_{1}$. Repeating this argument we have $K_{n} \subseteq L$ for all n and hence the HCF tower must be finite.

Motivation

Theorem (Golod-Shafarevich 1964)

Embedding problem has a negative answer. Gave explicit examples of K and p such that the Hilbert p-class field tower of K is infinite (\Rightarrow infinite HCF).

Example

$K=\mathbb{Q}(\sqrt{-2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13})$ has infinite 2-class tower.

Finite towers

Despite a long history, very view finite examples are known. Until relatively recently all of the known examples of finite towers had length either 1 or 2.

Example (B, 2003)

The field $K=\mathbb{Q}(\sqrt{-d})$ for $d=-445,-1015$ and -1595 has 2 -class field tower of length 3.

Example (B-Mayer)

The field $K=\mathbb{Q}(\sqrt{-9748})$ has 3-class field tower of length 3 .
This contradicts an earlier statement about this field by Scholz and Taussky.

Schur σ-groups

Let $K^{\infty}=\cup_{n \geq 0} K_{n}$ and $G=G_{K, p}=\operatorname{Gal}\left(K^{\infty} / K\right)$.
Koch and Venkov observed that if K is imaginary quadratic and p is an odd prime then G is a Schur σ-group.

Definition

Let p be odd and let G be a pro- p group with generator rank d and relation rank r. G is called a Schur σ-group if:

- $d=r$ ("balanced presentation").
- $G^{a b}:=G /[G, G]$ is a finite abelian group.
- There exists an automorphism $\sigma: G \rightarrow G$ with $\sigma^{2}=1$ and such that $\bar{\sigma}: G^{a b} \rightarrow G^{a b}$ maps $\bar{x} \rightarrow \bar{x}^{-1}$.

Finite Schur σ-groups

Theorem (Koch-Venkov, 1975)

$$
d \geq 3 \Rightarrow G \text { infinite. }
$$

So, for odd p, an imaginary quadratic field with finite p-class field tower must have associated Galois group with either $d=1$ or 2 generators.

If the length is greater than 1 , then $d=2$.

Finite Schur σ-groups $(d=2, p=3)$

A 2-generated 3-group G has 4 subgroups $\left\{H_{i}\right\}_{i=1}^{4}$ of index 3 .

Definition

The Transfer Target Type (TTT) of G is $\left\{H_{i}^{a b}\right\}_{i=1}^{4}$ where $H_{i}^{a b}=H_{i} /\left[H_{i}, H_{i}\right]$.

Definition

The Transfer Kernel Type (TKT) of G consists of the kernels of the transfer (Verlagerung) maps from $G^{a b}$ to $H_{i}^{a b}$ for $i=1$ to 4 .

Finite Schur σ-groups $(d=2, p=3)$

Let $G^{\prime}=[G, G]$ and $G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$.

Theorem (B-Mayer)

Let K be a complex quadratic field and let $G^{(2)}=G_{K, 3} / G_{K, 3}^{\prime \prime}$. If
(i) $\left(G^{(2)}\right)^{a b} \cong[3,3]$,
(ii) the TTT of $G^{(2)}$ is $\left[[9,27],[3,9]^{3}\right]$ or $\left[[27,81],[3,9]^{3}\right]$, and
(iii) the TKT of $G^{(2)}$ is ($H_{2}, H_{2}, H_{3}, H_{1}$),
then $G_{K, 3}$ has derived length 3 , ie. K has a 3 -class tower of length 3 .
One can verify that the field $K=\mathbb{Q}(\sqrt{-9748})$ satisfies the conditions in the theorem.

The proof

We make use of O'Brien's algorithm (1990) for enumerating d-generated p-groups.

Lower p-central series of G

$$
G=P_{0}(G) \geq P_{1}(G) \geq P_{2}(G) \geq \ldots
$$

where $P_{n}(G)=P_{n-1}(G)^{p}\left[G, P_{n-1}(G)\right]$ for each $n \geq 1$.
If $P_{n-1}(G) \neq 1$ and $P_{n}(G)=1$ then we say G has \mathbf{p}-class \mathbf{n}.

Vertices at level n :
d-generated p-groups of p-class n.
Edges between vertices at level n and $n-1$:
If G has p-class n and H has p-class $n-1$ then we have an edge

$$
G \rightarrow H \quad \Leftrightarrow \quad G / P_{n-1}(G) \cong H .
$$

Enumeration subject to constraints

We impose the constraints in the theorem to narrow down the search. This is effective because they involve inherited properties.

Example

If G_{2} is any descendant of G_{1} then G_{1} is a quotient of G_{2} and so $G_{1}^{a b}$ is a quotient of $G_{2}^{a b}$. If we are looking for groups G with $G^{a b} \cong[3,3]$ and we encounter a group G_{1} with $G_{1}^{a b} \cong[3,9]$ or $[3,3,3]$ (or worse) then we can eliminate G_{1} and all of its descendants from the search.

In this case, the given conditions are strong enough that all groups below a certain level are eliminated and the search terminates returning a complete and finite list of candidates.

Figure : Subtree of the full O'Brien tree ($p=3$ and $d=2$).
Computing descendants of each vertex (group) boils down to computing orbits of a certain linear group acting on subspaces of a finite dimensional vector space over \mathbb{F}_{p}.

Work in progress

- Find examples of 3-class towers of length ≥ 4.
- Find results for other choices of p and/or that are independent of machine computation.
- Understand distribution of $G_{K, p}$ as K varies.

Conjecture (Boston-B-Hajir)

Let G be a Schur σ-group of generator rank d. Among imaginary quadratic fields K such that $C l_{p}(K)$ has rank d, ordered by discriminant, the probability that $G_{K, p}$ is isomorphic to G is equal to

$$
\frac{1}{\left|\operatorname{Aut}_{\sigma}(G)\right|} \cdot \frac{1}{p^{d^{2}}} \prod_{k=1}^{d}\left(p^{d}-p^{d-k}\right)^{2}
$$

