GALOIS GROUPS, GROUP HOMOLOGY, AND RECIPROCITY: EXERCISES

AVNER ASH

Let Γ be a group, and let R be a ring (commutative, with identity). Let A be a $R\Gamma$ -module.

- (1) Use the standard resolution to show that $H_1(\Gamma, \mathbb{Z})$ is naturally isomorphic to the abelianization $\Gamma^{ab} = \Gamma/[\Gamma, \Gamma]$.
- (2) Suppose $\Gamma \subseteq G$. Suppose $g \in G$ normalizes Γ . Let $[z] \in H_r(\Gamma, A)$. Prove that zg is again a cycle and its class [zg] depends only on [z].
- (3) Let S be a semigroup such that $\Gamma \subseteq S \subseteq G$, and for all $s \in S$, we have $\Gamma \cap s\Gamma s^{-1}$ and $\Gamma \cap s^{-1}\Gamma s$ are finite index in Γ . If $[z] \in H_r(\Gamma, A)$ is represented by $z = \sum f_i \otimes_{R\Gamma} a_i$, for each $s \in S$, define a Hecke operator T_s by

$$T_s([z]) = \left[\sum_i \sum_{\alpha} f_i s_\alpha \otimes_{R\Gamma} a_i s_\alpha\right],$$

where

$$\Gamma s \Gamma = \coprod_{\alpha} s_{\alpha} \Gamma.$$

Show that this description of Hecke operator is well-defined. Specifically, prove T_s sends cycles to cycles and boundaries to boundaries.

- (4) Let $\Gamma = \text{PSL}_2(\mathbb{Z})$. You may assume Γ is the free product of $\sigma = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (of order $\begin{bmatrix} 0 & 1 \end{bmatrix}$
 - 2) and $\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$ (of order 3) So $\Gamma^{ab} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$

Using the standard resolution of
$$\mathrm{PGL}_2(\mathbb{Q})$$
, compute the Hecke operator T_ℓ on $H_1(\Gamma, \mathbb{Z}/2\mathbb{Z})$ for odd ℓ and $\ell = 2$. Find the attached Galois representation.

Hints: Let x_{Γ} denote the image of x in the coinvariants M_{Γ} for x in a Γ -module M.

(a) $H_1(\Gamma, \mathbb{Z}/2\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z}$ generated by the cycle $[1, \sigma]_{\Gamma}$ in the standard resolution of $\mathrm{PGL}_2(\mathbb{Q})$.

(b) If $s \in \text{PGL}_2(\mathbb{Q})$ and $\gamma \in \Gamma$, then $[s, s\gamma]_{\Gamma}$ is homologous to $[1, \gamma]_{\Gamma}$. Warning: This is a hard and lengthy exercise.

(5) Work out the well-rounded retract and Voronoi tessellation for n = 2. See Example A.15 in the Appendix of Modular Forms, a Computational Approach if you get stuck.