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A B S T R A C T

Many organisms maintain collective territories and compete on behalf of the fitness of the overall group.
Inspired by this concept, the territorial raider model is a graph-based resource competition in which
populations have fixed home locations and a limited range of sites accessible for raiding. In our present
extension of the model, groups control “colonies” or “armies” which can be divided across multiple locations.
We present Nash equilibria for games played on both regular graphs and regular bipartite graphs, and we also
examine differences that emerge when populations are composed of discrete units (pack scale) or when they are
continuously divisible (colony scale). Reliance upon defense over aggressive raiding is greater here than in the
original model where populations had to totally commit to a singular action. This defensive posture increases
with the advantage of the local population and also varies with the degree of the graph's connectivity. When
discrete units are employed, multiple strategies emerge.

1. Introduction

A key focus within spatial ecology is the identification and under-
standing of mechanisms that regulate the distributions of differing
species across the available landscape (Urban and Keitt, 2001; Fortuna
and Bascompte, 2006; Fortuna et al., 2009; Bellisario et al., 2010).
Various factors influence the dispersal of animal populations and limit
their ranges, including the physical topography of the landscape and
the social context within and external to the group in question (Jacoby
et al., 2012; Farine et al., 2015; Strandburg-Peshkin et al., 2015;
Jacoby and Freeman, 2016). Diamond (1975) posited that competition
was one of the most important factors generating any structure within a
community, with territorial overlap between rival groups potentially
leading to losses of scarce resources such as food, water, or shelter to
nearby rivals (Jetz et al., 2004). In this paper we focus on a model of
group interactions over resources in which populations may strategi-
cally allocate their forces across multiple locations. We adopt a multi-
player game theoretic model of overlapping territories or neighbor-
hoods on a graph network (Broom and Rychtář, 2012; Galanter et al.,
2015) to explore territoriality among competing groups (e.g. prides,
colonies, armies). Further we examine how the defensive posture or
raiding aggressiveness of a population responds to variations in the
potential encounter size of opposing groups and the advantages

afforded to home site defenders.
Many organisms, including humans, maintain a social structure

and division of labor that permits the achievement of multiple tasks
simultaneously by allocating portions of total available effort to each
purpose on behalf of the group as a whole. The most common example
of this phenomenon involves the dispersal of individuals to retrieve
food items and other resources for subsequent group consumption at a
designated home site. Examples of territorial animals with communal
sharing include African wild dogs and foxes (Ginsberg and Macdonald,
1990), roadrunners (Kelley et al., 2011), lynx (Schmidt et al., 1997),
chestnut-crowned babblers (Sorato et al., 2015), and green woodhoo-
poes (Radford and du Plessis, 2004). The prevalence of prides among
African lions (Heinsohn and Packer, 1995; Mosser and Packer, 2009)
may result from territorial conflicts with con- and heterospecifics
(Packer et al., 1990). The violence attendant to group conflict ranges
considerably across taxonomic groups. At one extreme, troops of male
chimpanzees vigorously defend their own territorial food resources and
violently raid those of others (Watts and Mitani, 2001; Williams et al.,
2004). Conflict resolution is less deadly, however, between colonies of
the honeypot ant, Myrmercocystus mimicus, which perform rituals,
dances, and displays in a demonstration of group strength (Hölldobler,
1981; Hölldobler and Wilson, 1990). So too, boundaries between rival
groups may fluctuate temporally, or they may be sharply preserved

http://dx.doi.org/10.1016/j.jtbi.2016.10.007
Received 15 August 2015; Received in revised form 4 October 2016; Accepted 17 October 2016

⁎ Corresponding author.
E-mail addresses: galanter@grinnell.edu (N. Galanter), dssilva@wpi.edu (D. Silva), jtrowell@uncg.edu (J.T. Rowell), rychtar@uncg.edu (J. Rychtář).

Journal of Theoretical Biology 412 (2017) 100–106

0022-5193/ © 2016 Elsevier Ltd. All rights reserved.
Available online 21 October 2016

crossmark

http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2016.10.007
http://dx.doi.org/10.1016/j.jtbi.2016.10.007
http://dx.doi.org/10.1016/j.jtbi.2016.10.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.10.007&domain=pdf


with little territory shared.
Graph and network theory have become a valuable tool in under-

standing the formation of community structures and ecological move-
ments (Lewinsohn et al., 2006; Montoya et al., 2006; Sah et al., 2014).
They have been applied to many ecological and evolutionary phenom-
enon (Dale and Fortin, 2010), and graphs have proven useful in large
scale systems such as metapopulations (Economo and Keitt, 2008),
biogeographic areas (Noss, 1991), and in wildlife or fisheries manage-
ment (Christensen et al., 1996). Moreover modern theoretical efforts
have contextualized how games are played upon graph structures
(Nowak and May, 1992; Lieberman et al., 2005; Shakarian et al.,
2012; Broom and Rychtář, 2013; Antal and Scheuring, 2006; Taylor
et al., 2004; Hadjichrysanthou et al., 2012; Jeong et al., 2014). These
efforts resolve one of the primary drawbacks of traditional game
theoretic models of biology, namely the assumption of well-mixed
populations or communities, while not rising to the level of intract-
ability characteristic of continuum models (however, see Cosner
(2005); Rowell (2009, 2010)). Biological applications of this theory
now include epidemiology (Keeling et al., 2010; Meyers, 2007; Shirley
and Rushton, 2005) the study of the evolution of traits under
synergistic effects (Taylor, 2013), cooperation among relatives (Allen
and Nowak, 2015), cooperation in public goods games (Rand et al.,
2010; Szolnoki and Perc, 2012), and the consequences when the
underlying interaction structure changes (Broom and Cannings, 2013).

(Broom and Rychtář, 2012) introduced the territorial raider model
as a framework to describe interactions such as when territorial
animals competed for food resources for other attempts at multiplayer
approaches see Kurokawa and Ihara (2013). They alternatively con-
sidered scenarios with random movement of agents with strategic
interactions using the hawk-dove game, as well as with strategic
movement and deterministic outcomes. Bruni et al. (2013) further
analyzed multiplayer hawk-dove territorial games, while (Broom et al.,
2015) incorporated birth-death processes into both hawk-dove and
public goods games.

(Galanter et al., 2015) recently explored similar models in which
defensive units could pre-emptively secure a portion of a site's
resources prior to the initiation of conflict (which is resolved with a
proportionate division of contestable resources). Here we extend those
previous results to territorial interactions between social animals living
in communally held territories. Each population can allocate portions
of available forces to multiple raiding and defensive tasks rather than
being restricted to a complete commitment to a single activity. Our
main results focus on a continuous model in which a group's force can
be divided into arbitrarily small units; however, we do also consider
scenarios with discrete army units.

2. Army territorial raider game

Consider an environment comprised of a set of distinct patches
connected by a network of traversable corridors, with each patch
serving as the home territory of a single population. We mathematically
represent this arrangement by a graph G V E= ( , ) containing n vertices
in the set V which are connected by the edges in E. The graph is a
reflection of habitat connectivity (Fischer and Lindenmayer, 2007), and
it may result from either the spatial configuration of habitat patches or
larger tracts of contiguous habitats (Ferrari et al., 2007; Rayfield et al.,
2011). To reflect the spatial conflict over resources during territorial
raids, we define the army territorial raider game (ATR Game) played on
the graph G by the following rules and assumptions (see Table 1 for a
complete list of variables). There are n populations, denoted ai, who
participate in a competition for resources scattered across the graph.
Each population is associated with a unique home vertex v V∈i which
has a corresponding resource value Ri. Each population manages an
army whose total strength, Ti, may be allocated across the population's
home vertex (defending) and any adjacent vertices (raiding). This
allotment of forces on the graph is the population's strategy, repre-

sented by the vector s m m= ( , …, )i i in1 . All allotments are nonnegative,
m T∑ =j ij i and m = 0ij if the vertices vi and vj are non-adjacent. The

combined distribution of forces for all populations result in a payoff Xi
for population ai.

In the ATR Game, defending units have an inherent advantage over
raiders, characterized by the score H ∈ [0, 1]. A population using a
portion of its forces p m T= /i ii i to defend its home vertex automatically
protects p HRi i resources. The remaining p H R(1 − )i i resources are
proportionately divided amongst all contesting forces, m∑k ki. If no
raiders are present at the vertex vi, i.e. m∑ = 0k i ki≠ , then by default all
resources are awarded to the home population ai. The total payoff for
population ai is thus a combination of defended resources and those
obtained while raiding the home vertices of other populations,
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A Nash equilibrium to the ATR Game is a set of strategies
S s s s= { , , …, }n1 2 such that no individual population can improve its
payoff by changing strategies independently of the other populations.

In this paper, we will consider the ATR Game subject to the
additional constraints that the resources at all locations are equal
(Ri=1) and that the size of the army available to each population is
likewise the same (T T=i ). In the results below, we consider separately
whether each army is infinitely divisible or if they are composed of
discrete units that cannot be further decomposed (e.g. platoons or
squads). In the first scenario, the army size managed by each popula-
tion is set to T=1 and the allocation of forces are drawn from
m ∈ [0, 1]ij . In the second case, each army is composed of T U Z= ∈ +

discrete units, and force allocations are m U∈ {0, 1, …, }ij .

3. Results

We considered the ATR Game played on different types of graph
structures. For armies with continuously divisible strength (scaled to
1), we demonstrated that symmetric uniformity in raiding forces is a
self-reinforcing strategic feature. Furthermore under symmetric raid-
ing, there is a single defensive posture which is the strategic equili-
brium.

Table 1
Notation symbols and meanings.

Symbol Meaning

G Graph representing a configuration of populations and territories
V Set of all vertices in G
E Set of all edges in G
vi Vertex in V
Ri Total available resources at vertex vi (always 1)
ai Population with home vertex vi
Ti Size of army ai
U Units in an army in the discrete game
mij Amount of population ai's forces present at vertex vj
si Strategy distribution of population ai's forces over the vertices in G
S Set of each population's strategies in a round
pi Portion of army ai defending
H Conversion from portion of army defending to resources protected
Xi Total payoff obtained by population ai
d Degree of a regular graph
A Independent set of a regular bipartite graph
B Independent set of a regular bipartite graph
dA Degree of the vertex sets A in a regular bipartite graph
dB Degree of the vertex sets B in a regular bipartite graph
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3.1. Regular graphs

A d-regular graph is a graph G V E= ( , ) such that every vertex
v V∈i has d neighbors. Regular graphs encompass several different
graph families including cycles and complete graphs.

Our primary result is that if a population's field of opponents aj
employs equal defensive postures, p p=j , and that their raiding forces
are uniformly allocated to all targets, represented by

⎧
⎨⎪

⎩⎪
m

j k
p j k=

, if ≠ are connected,
, if = ,

0, otherwise,
jk

p
d

1 −

(2)

then for any given defensive posture pi and for any p, the optimal
strategy for population ai is also to adopt a uniform raiding allocation
over all potential targets. Secondly, there is a unique defensive posture
p* ∈ [0, 1] such that if all populations defend with p* forces and send
m p d= (1 − *)/ij forces to all neighboring sites vj, then the game is at a
Nash equilibrium state.

3.1.1. Proof of uniform raiding as an equilibrium
To prove this, let ai be a population on a regular graph with d

vertices. For all opposing populations aj with j i≠ , let their strategy be
a defensive posture of p p=j with their remaining forces split equally
between all adjacent vertices. If population ai sends no raiders and only
defends, pi=1. Then the uniform distribution of population ai's raiding
forces is trivially true in that m = 0ij for all j i≠ . Now assume that
p ∈ [0, 1)i and that the home-site advantage is H ∈ [0, 1). The reward
to population ai for raiding site vj simplifies to

Hp m

m p
d

(1 − )

+ 1 − 1 − ,ij

ij (3)

and the total payoff for all raiding activity is

∑f Hp
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The function f is continuous, differentiable and strictly concave down
on the closed set defined by m ≥ 0ij and m p∑ = 1 −j i ij i≠ . There is thus a
unique maximum to the function, namely the symmetric raiding
strategy
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Within the domain, the closed set defined by m ≥ 0ij and
m p∑ = 1 −j i ij i≠ , langrangian optimization using the constraint

m p∑ = 1 −j i ij i≠ and the raiding payoff function f verifies that this
strategy is an equilibrium, and the bordered Hessian confirms this
strategy is a maximum.

3.1.2. Proof of defensive posture p* as an equilibrium
Assume that population ai therefore adopts symmetric raiding.

With some algebraic simplification, the total payoff for population ai
(Eq. (1)) from both defense and raiding becomes
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A purely defensive strategy (pi=1) yields
X H p p= (1 + (1 − ))/(2 − )i . For some parameter combinations

| > 0δX
δp p =1

i

i i
and the payoff for this strategy is a local minimum and

should not be adopted. At the other extreme, a pure raider strategy,
pi=0, earns X d Hp p d= (1 − )/( + )i . This strategy is typically another
local minimum for the population's payoff; however this is not

uniformly true for all parameter combinations.
The symmetric strategic equilibrium occurs when = 0X

p
∂
∂
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the constraint p p=i . Thus we have the quadratic equation of p

H p p
d
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(7)

The symmetric strategic defense posture is
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The upper solution of the quadratic formula has been discarded as it
always exceeds 1 under the conditions on H, whereas the lower
solution p* ∈ [0, 1]. The solution is at least a local maximum for
population ai ( X p∂ /∂ < 0i i

2 2 ), and the population cannot increase its
payoff by independently deviating from this strategy, nor can any other
population, by symmetry. Fig. 1 presents the defensive posture of each
population at the strategic equilibrium p* as a function of H for
different degrees of connectivity within the regular graph. The defen-
sive posture p* strictly increases with the home-site advantage H, and
as H goes to 0, p* approaches d1/(1 + ). This value is the uniform
allocation of forces over all targets and the home vertex. At the other
extreme, populations adopt a purely defensive strategy p* = 1 when
H=1 without regard to the degree of the graph. In this particular case,
however, the solution is a weak equilibrium as ineffective raids neither
gain nor cost anything to the deviating population. Analysis of the
discrete game supports the contention that a defense of p* with equal
raiding is the only Nash equilibrium for the game.

3.2. Regular bipartite graphs

A bipartite graph is a graph G V E= ( , ) such that there exist two
disjoint subsets A and B that partition V, i.e. A B∩ = ∅ and A B V∪ = ,
and where every edge in E connects a vertex in A to a vertex in B. The
graph is said to be regular if every vertex v A∈y has degree dA and
every vertex v B∈z has degree dB.

Let G be a regular bipartite graph with sets A and B defined above.
Let v A∈y be the home vertex of population ay, with v B∈z an adjacent
location. Assume that all other populations associated with set A have
defensive posture p and equally divide raiders among all potential
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Fig. 1. Equilibrium strategies represented by portion of army remaining at home vertex
for all populations. Strategies are graphed by H value and d, the degree of the graph.
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targets. Assume all populations associated with B do likewise with
defensive posture q.

As with regular graphs, population ay with defense py will respond
to the symmetry of its peers and raid each target with m p d= (1 − )/yz y A.
Let ρ d d= /A B be the ratio of degrees for each set. The payoff to
population ay from both defending and raiding is

X
p ρ q H

p ρ q

d Hq p

p d q d p
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(1 + (1 − ) )

+ (1 − )
+

(1 − )(1 − )

(1 − ) + [ + ( − 1)(1 − )]
.y

y

y

A y

y A B (9)

Maximization involves a pair of third-order polynomials, so equili-
brium solutions to the optimal defense postures for populations in each
set were obtained numerically using the vpasolve function in Matlab.
For low values of H, the set of populations characterized by the larger
degree abandoned all defense and adopted a pure raider strategy (see
Figs. 2 and 3). As observed with regular graphs, defensive postures still
increase with the advantage H; however p* does not always decrease
with the number of neighbors. Rather, that relationship is seen only at
low and intermediate values of H, however, between H values of

approximately 6.5–7.5, the solution curves for different degrees cross,
switching their order. Additionally, the relationship between p* and the
degree of the other set is reversed.

3.3. Games with discrete units

The continuous game is a sensible model approximation for groups
with vast numbers of individuals, e.g. ant colonies; however the
concept of infinitely divisible forces breaks down when groups have
few members (e.g. lion prides, canine packs) or there is an organiza-
tional hierarchy such as armies composed of companies or platoons. In
the discrete ATR game, each population controls an army with U units,
and every deployment mij must be an integer between 0 and U. We
conducted studies for three different structures, comparing them to
continuous games with the same graph structures.

The first game analyzed consisted of a single pair of connected
vertices, a 1-regular graph. Populations were allotted between 5 and 30
units for their armies. Fig. 4 compares the equilibrium results for
defensive postures here with those found with a 1-regular graph with
continuously divisible units. As the number of units increased, the
observed portions of an army devoted to defense drew closer to the
solution curve for the game with continuously divisible armies.

The second game we analyzed was played on a hl3-cycle, a 2-regular
graph. We compared this with our continuous solution for 2-regular
graphs. Fig. 6. As with the 1-regular game, the average portion of units
defending home vertices follows the prediction from the continuous
case, especially as army size increased. More importantly, multiple
equilibria were demonstrated to exist for a given game Fig. 5, and they
were not always symmetric ( Fig. 6).

The final graph studied was the three-leaf star Fig. 7. This structure
is a bipartite graph with A| | = 1 and B| | = 3. While there are pure Nash
equilibria to the game for specific combinations of units U and
advantage H, not all combinations of these parameters supported the
existence of a pure Nash equilibrium. For instance, there is no
equilibrium when H=0.5 and U=15 or when H=0.75 and U=5.

4. Discussion

In this paper, we extended the territorial raider model (Broom and
Rychtář, 2012; Galanter et al., 2015) to encapsulate the behavior of
multi-tasking, group-oriented collectives, e.g. armies or colonies,
engaged in a spatial resource competition with similar groups. Both
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Fig. 2. Equilibrium strategy represented by portion of army remaining at home vertex
for populations in A. Strategies are graphed by H value and dA, with dB constant at 5. As
a note, the lines for each dA intersect over a small range of H values, not a single point.
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Fig. 3. Equilibrium strategy represented by portion of army remaining at home vertex
for populations in B. Strategies are graphed by H value and dA, with dB constant at 5. As
a note, the lines for each dA intersect over a small range of H values, not a single point.
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game, and as units increase points become more red. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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natural defensive advantages and the community structure defined by
overlapping territories affect the aggressiveness observed within the
community. As the inherent advantage afforded to defenders (H)
increases, the equilibrium level of defense (p*) also increases. Thrips,
for example, illustrate this advantage as some resident individuals
bearing large heads form plugs that physically block access into nest
galls (Bono, 2007). This advantage has a dual effect of increasing the
immediate reward for defenders while simultaneously reducing the
potential share available to raiding groups. This combination naturally
selects for a more defensive behavioral phenotype. The discretization of
sub-units within the population leads to similar, if not identical,
equilibria as in the continuously divisible case. The extent to which
any asymmetries are present among the populations diminishes as the
divisibility improves to finer levels. Furthermore, multiple solutions are
documented to exist for these games.

Naturally connected networks, such as those constrained by
topographical features like rivers or ridge lines, are ideally represented
by graph networks (Urban and Keitt, 2001). The complexity of the
habitat structure often relates to the both population size and the
structure within the community, and this can be seen in many animals
including fish (Luckhurst and Luckhurst, 1978; Bell and Galzin, 1984)
and macro-invertebrates (Barthélemy, 2003). In our model, the

defensive posture decreases with the degree of connectivity in the
graph as raiders overwhelm the host population's share of resources
that could not be sequestered prior to conflict. This provides a testable
hypothesis that behavioral aggression should increase as additional
out-groups are added to the community via the manipulation of travel
corridors between group sites.

For the purposes of this initial study, we limited our consideration
to symmetric games on regular or regular bipartite graphs, with the
former as the base case stated above. Bipartite graphs have now been
used for many plant-related interactions including plant-animal mu-
tualisms (Bascompte et al., 2003; Jordano et al., 2003; Lázaro et al.,
2005), pollinator webs (Memmott et al., 2004), herbivory (Higashi
et al., 1991), plant-pathogen models (Brooks et al., 2008), and
frugivory and seed dispersal (Carlo and Yang, 2011). As these examples
attest, bipartite graphs typically contain two distinct classes of nodes or
populations. One could similarly characterize our bipartite model as a
coalition game with non-aggression among populations of the same
alliance (e.g. kinship systems or conflicts that are primarily hetero-
specific in nature). Even without that characterization, however, many
standard systems are actually bipartite, such as lattice grids, linear
patch networks, and simple gradient webs. These stencils are useful in
breaking up larger landscapes into smaller, internally homogeneous
patches (Urban and Keitt, 2001).

Bipartite graphs affect the results in conflicting ways, and their
structure may impose a minimum threshold on H before defense
commences (p* > 0). Defensive postures respond to the degree of
connectivity of a population's home site differently than that of its
target sites. As in the base case, the former weakens the defensive value
of home sites, reducing contestable shares of resources as the number
of invaders increases. Meanwhile, the latter dilutes the population's
projected strength as there are more rivals with which to contend at
target locations. Additionally, the ordering of solution curves by degree
inverts at higher defensive advantages, – something not observed in
regular graphs. It is uncertain why this should be so and merits further
investigation. Finally not all regular bipartite graphs admit a pure
strategy equilibrium for discrete games, while others permit multiple
solutions.

Although there is a presumption of an actual physical domain
underlying the graph structure of these games, our model is also
applicable to the study of niche generalization and specialization.
Broadly speaking, two species interact if they have matching traits
along some phenotypic dimension (Eklöf et al., 2013). Nodes are
interpreted as specific ecological niches, with the resident population
its corresponding primary specialist and the parameter H understood
as the advantage conferred by specialization. The degree of a popula-
tion's home site represents its niche breadth (sensu (Pielou, 1972)),

Fig. 5. Representation of the three possible equilibria for a K3 graph with U=10. The first row of strategies correspond to when H=0.5. The second row corresponds to when H=0.75.
Unit colors and vertex colors correspond. The portion of units kept home is nondecreasing relative to H. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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and the distribution is effectively a phenotypic assortment (Farine,
2014; Farine et al., 2015). In this interpretation, a population should
be a facultative generalist until such time as specialization advantage
allows for the exclusion of other populations.

The current model is distinguished from the previous territorial
raider model (Galanter et al., 2015) in that, as a result of the divisibility
of the group, defense is more readily incorporated into equilibrium
strategies. When the group was a singular cohort in the earlier model,
every strict equilibrium that existed occurred when all populations
raided another's territory in a one-to-one permutation of positions
regardless of graph structure and H value. With the army territorial
raider model, however, strict equilibrium strategies do involve a non-
trivial level of defense (or reluctance to raid) for sufficiently large H. In
comparison, continuous models of individual-focused spatial competi-
tion (e.g. Rowell (2010)) demonstrated that increased costs from
heterospecific conflicts (similar but not fully analogous to the homesite
advantage here) led to spatial instability and patchiness in the
distribution of rival populations with no attempts to further expand
ranges (termed the “Armed Camp” scenario).

This pilot study has assumed a degree of homogeneity over the
graph network including the degree of connection and structural
symmetry; however, most ecological networks are heterogeneous in
the distribution of their edges (Bansal et al., 2009; Sah et al., 2014).
With current concerns over possible environmental disruptions
(Agrawal et al., 2007), one promising application of this work is
investigating how increasing disconnectedness among animal popula-
tions and heterogeneity alter the structure of communities as edges are
created or destroyed due to either the landscape effects of human
activity (Crooks and Sanjayan, 2006), e.g. by erecting new barriers or
removing previously existing ones, or its general effects on territorial
quality (Fischer and Lindenmayer, 2007), e.g. modulation of resource
availability at different sites.

Additionally, further analyses could relax existing conditions on
resource availability, the size of fighting forces, and defensive advan-
tages by allowing these parameters to vary across populations.
Moreover, although proportional allocation of resources may be
appropriate when there is no direct fighting or when conflict is resolved
at the individual level (Johnson and MacKay, 2015), something like
Lanchester's squared law of conflict (Lanchester, 1916) might be more
appropriate for conflicts involving ant colonies (Franks and Partridge,
1994), chimpanzees (Wilson et al., 2002), and hominids and early

humans (Johnson and MacKay, 2015). Also, one can expand our model
by allowing within population conflict or situations where actions are
not perfectly coordinated. Finally, variant models could also feature
costs of fighting in the payoff functions, expanding the model's scope to
encompass all encounters from the ritualistic to the violent and costly.
These costs could either be equal for raiders and site owners or
variable, as in the original territorial raider model.
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