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Abstract

We consider a finite, fixed-size population of mobile cooperators and free-riders. A cooperator
is an individual who, at a cost to itself, provides benefits to any and all individuals in its
vicinity, whereas a free-rider does not provide any benefits and thus pays no cost. Individuals
are free to move to maximize their payoff, and our model allows for the interactions among
multiple individuals at the same time. Using Gillespie’s algorithm, we build an exact stochastic
simulation of this continuous-time Markov process and find that decreasing the individuals’
mobility or decreasing the size of the interaction neighborhood promotes the fixation of
cooperators in the population.
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1 Introduction

Understanding the emergence and persistence of coop-
eration among selfish individuals has sparked extensive
studies in evolutionary game theory [39, 5, 37, 27, 41].
As conventionally understood, cooperators are individ-
uals who pay a cost in order for another individual to
receive a benefit, while a free-rider (or a defector) is an
individual who does not provide any benefits, and thus
pays no cost, but can receive benefits if offered. In infinite
and well-mixed populations, free-riders are favored over
cooperators as all individuals receive the same benefits
but cooperators alone incur the cost. Yet, cooperation
can be found everywhere around us, and it builds and
sustains many biological, social, and economical systems
[6, 28].

The prisoner’s dilemma game [5] is a classical model
for the evolution of cooperation for pairwise interactions;
however, real interactions typically involve multiple in-
dividuals. In response, multi-player games were intro-
duced into biology models [31, 8, 11], and recent stud-
ies have gone into greater details [15, 16]. Furthermore,
games of public goods, which are multi-player analogues
of the Prisoner’s dilemma, have also been studied in
[17, 26, 35, 20, 40, 36, 45, 21].

Nowak in [28] discusses several mechanisms for the
evolution of cooperation such as network reciprocity. In
[29] it was demonstrated that, within a fixed spatial struc-
ture where individuals can interact only with their clos-
est neighbors, cooperators can help each other out and
survive by forming clusters. The effect of spatial struc-
ture has been studied in [33, 34]. The cluster formation

helps protect the cooperators against potential invasions
made by the free-riders even in mobile populations [13].
Once individuals can move, the corresponding interaction
structures can change, analytical models such as [30] no
longer apply, and new models must be developed. For
example, Axelrod in [5] considered individuals on a two-
dimensional square lattice, where interactions would only
happen within local neighborhoods. Vainstein et al. [44]
extended the model of Nowak and May [29] by considering
a regular lattice where some vacant sites permit the indi-
viduals to diffuse easily; see also [32, 38, 7, 4, 48, 22, 43, 1]
for other models of dynamic networks.

The evolution of cooperation in mobile populations
has recently been studied in [12, 46, 3]. In our paper, we
consider a finite, fixed size population of mobile individ-
uals that can potentially provide benefits to all individ-
uals in their vicinity. Individuals are either cooperators
or free-riders, the determination of which is made at the
start of each simulation. We allow the individuals to move
in a directed fashion towards places with higher payoffs,
i.e. generally towards cooperators. Using Gillespie’s al-
gorithm [14], we build an exact stochastic simulation and
study how mobility—defined as the average number of in-
dividual movement events for every reproduction event—
and the neighborhood size of an individual affects the
evolution of cooperation.

2 Methods

We consider a continuous time Markov chain process on a
population of N individuals I1, ..., IN occupying positions
P1, ..., PN on a 1-dimensional lattice of length L with pe-
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riodic boundaries. At the beginning, the positions of all
individuals are chosen at random and, as in [13], each in-
dividual is randomly assigned with equal probability to
be either a cooperator (C) or a free-rider (F ). We allow
multiple individuals to occupy the same position in space.

Let b be the benefit and c be the cost for cooperation.
We say that the individual Im is in a vicinity (or neigh-
borhood) of In if their mutual distance is no more than
the neighborhood radius, r. The neighborhood of indi-
vidual In is thus the interval consisting of 2r + 1 points
(Pn + d mod L) for d = −r, . . . ,−1, 0, 1, . . . , r.

Given the positions and types of the individuals, we
define the payoff of an individual In by

pn = b · Cn +
1

Cn + Fn
− cn (1)

where

cn =

{
c if In is a cooperator,

0 if In is a free-rider
(2)

stands for the actual cost of giving or not giving the ben-
efits; Cn and Fn are the numbers of cooperators and free-
riders, respectively, in the vicinity of individual In, in-
cluding the individual In itself; and the term 1

Cn+Fn
rep-

resents the competition for local resources among all the
individuals. When no cooperator is present in the sys-
tem, this causes the individuals to distribute practically
uniformly over the environment.

Different positions of an individual yield potentially
different payoffs. When individuals are allowed to move
within the environment, it is thus plausible that they will
tend to move towards places with higher payoff.

Our Markov chain process consists of two types of
events. One event is a movement of an individual, an-
other one is a reproduction of an individual. The mo-
bility of an individual is characterized by the average
number of individual movement events for every repro-
duction event. We assume that an individual “samples”
all possible places it can move to from its current position
and then picks a new place with a probability positively
correlated to the difference between the payoff at the po-
tentially new place and its current position. Specifically,
the propensity of an individual In to move from Pn to
Pn′ is exp(pn′ − pn), where pn is given by (1) and pn′

would be given by a same formula assuming the position
of In would be Pn′ and not Pn. In order to minimize the
number of different parameters of our model, we assume
that individuals can simply move one place left, stay in a
same place, or move one place right, but in theory, larger
and more general moves are possible. When a1, . . . , am
represent all propensities of all potential moves of all indi-
viduals, a move corresponding to ak happens with prob-
ability ak/ (

∑m
l=1 al). In general, the individual that can

increase its payoff most is the one that most likely moves;

however, an individual can move to a position with lower
payoff. Such a move is very unlikely, yet such a “non-
optimality” of the movement is needed to guarantee for
the individuals to be able to find the global optima and
not get trapped in the local ones.

For reproduction, we consider “birth-death” updating
(see for example [23]). First, with a probability propor-
tional to the individual’s payoff, we randomly choose an
individual to be reproduced. If the payoff of an individual
In is pn given by (1), then an individual Im is chosen for
reproduction with probability

p̃m∑N
n=1 p̃n

(3)

where the adjusted payoff, p̃n of an individual In, is de-
fined by

p̃n = tan−1(pn) +
π

2
. (4)

This adjusted payoff, p̃n, is used in place of pn in (3) to
make sure that (a) individuals with pn < 0 can repro-
duce and (b) individuals not in the cluster of potentially
many cooperators can reproduce. Without such an ad-
justment, cooperators would drive free-riders to extinc-
tion very soon after several cooperators aggregated.

The offspring inherits from its parent the strategy (co-
operator or free-rider) and it is placed randomly close to
the parent (either just next to the parent or at the same
place as the parent). Finally, a random individual of the
original population (potentially including the parent) is
culled to maintain the population at constant size.

We simulate the above described Markov chain pro-
cess by the Gillespie’s algorithm implemented in Matlab
[25] (see [10] for a general implementation of the algo-
rithm in Matlab). We run the simulation until all indi-
viduals are either cooperators or free-riders and we repeat
such runs 104 times. The fraction of times cooperators
win is called the fixation probability of cooperators.

Our simulation worked as intended. See for example
Figure 1 showing the population of 4 individuals, 2 co-
operators, and 2 free-riders. The individuals move ran-
domly, but with a general tendency to aggregate around
cooperators. The free-rider starting originally around po-
sition 37 finds the cooperator from position 45 relatively
fast around time 10. The cooperator tries to escape and
due to an (intended) non-optimality of the movement,
the escape is successful as the free-rider did not follow
at first, only to join the same cooperator some later
around time 60. Around the time 65, two cooperators
join and form a group. This increases their payoff and
(by a chance) one of them is selected for a reproduction.
By a chance, a free-rider originally from position 80 is
killed and the new cooperating individual is placed within
the cluster of cooperators. The cluster of 3 cooperators
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Figure 1: Evolution of the population and positions of the individuals in time. Cooperators are blue, N = 4, L = 100,
b = 2, c = 3, r = 1, and mobility = 100.

is strong enough so that they rarely break up and thus
keep together. The remaining free-rider finds the cluster
around the time 80 and stay with it as well. There is
another reproduction event at time 100 at which point
a cooperator replaces the free-rider and the simulation
ends.

3 Results

We have run the simulation for N = 30, L = 100, b = 2,
c = 3, neighborhood radius ranging from 1 to 49, and
mobility ranging from 0 to 10. We replicated each data
point 104 times to rule out a stochastic noise as much as
possible. The results are demonstrated in Figure 2 and
can be summarized as follows:

1. For a reasonably small neighborhood (in our case
smaller than 2/5 of the total environment), decreas-
ing the mobility increases the fixation probability of
the cooperators.

2. Increasing the size of the neighborhood (in our case
to about 1/2 of the total environment) decreases
the fixation probability of the cooperators.

3. For larger neighborhood sizes (in our case 2/5 or
more of the total environment), neither the mobil-
ity nor the neighborhood size has any significant
effect on the fixation probability of cooperators.

The effect of the neighborhood size is easy to under-
stand within the framework of existing literature. The
fixation probability of cooperators is strongly linked to
the presence of clustering [13, 33]. Within our framework,
individuals are allowed to move and clusters are formed
relatively fast. As the neighborhood size increases, the

formed clusters contain more individuals, and thus, as
shown in [45] (see also [9, 18]), the cooperation is harder
to achieve.

Also, everything indicates (although we did not col-
lect appropriate exact data) that as mobility increases,
larger and larger clusters can form even in relatively small
neighborhoods (since in our model multiple individuals
can occupy the same spot) which would explain the neg-
ative effect of mobility by results in [45] as above.

4 Discussion

We have created an exact stochastic simulation for a mo-
bile population consisting of cooperators that are able to
enhance the quality of the environment, but have to pay
a cost for doing so, and free-riders that do not modify the
environment themselves but can benefit if others improve
it. We observed that as either the mobility or the neigh-
borhood size increases, the fixation probability of coop-
erators decreases. The simulations were computationally
quite expensive (especially for large mobilities). However,
we did run a smaller number of simulations while vary-
ing different parameters (such as dimensionality or size
of the lattice, size of the population, benefits and cost of
the cooperative behavior) and did not see any indication
that our results above are violated.

The negative effect of the neighborhood size on the
evolution of cooperation is relatively well understood, yet
it is still complex. As the neighborhood size decreases,
the probability of cooperators fixating increases, but the
cooperators are potentially cooperating less (when the
neighborhood size is 0, an individual cooperates only with
those occupying the exact same place). It is therefore
not entirely true that decreasing the neighborhood size

www.sporajournal.org 2015 Volume 1(1) page 4

http://www.sporajournal.org


Evolution of Cooperation in Mobile Populations Suarez, Suthaharan, Rowell, Rychtá̌r
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Figure 2: The dependence of the fixation probability of cooperators on the neighborhood size. Each data point is an
average of 104 simulations. Parameters are N = 30, L = 100, b = 2, and c = 3. Radius of 50 represents the whole
environment.

promotes cooperation. The effect of mobility on the fixa-
tion of cooperation depends heavily on the details of the
model. Vainstein et al. [44] and Lin et al. [24] consider
regular lattice environment where some sites are empty
which permits the individuals to diffuse. In such a set-
ting, Vainstein et al. [44] similarly found that increas-
ing mobility promotes cooperation because it increases
the likelihood of the formation of cooperator clusters and
eventually dominate the population. At the same time,
mobility reduces the competition for local resources and
helps to promote cooperation [2]. Moreover, Jia and Ma
[19] demonstrate that a higher movement speed enhances
cooperation within a very large environment, but within
very small regions, increasing the movement speed actu-
ally reduces the cooperation level. In our setting, mo-
bility is inversely proportionate to the reproduction rate
that has been used in work of others. For example, [42, 47]
show that a wide range of reproduction rates can enhance
cooperation, while really fast and slow reproduction rates
can hurt cooperation no matter what is the interaction
neighborhood size.

We recognize several future directions in which re-
search could follow and help further our understanding
of cooperation. In this paper, we focused on two primary
parameters, neighboorhood size and mobility, but there
are other model parameters whose variation and inter-
play also need to be considered. The cost of cooperation,
benefits provided, and heterogeneity of the environment
could all be contrasted in different studies. Also, we con-
jecture that the key deciding factor for the evolution of
cooperation in our setting is the average number of indi-
viduals in the formed clusters. Namely, if a change in the
parameters causes the mean cluster size to increase, the
fixation probability will decrease.
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