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Abstract. We consider the evolution of cooperation in finite populations and

we model a scenario where two individuals can interact only if both intend to
do so with their counterpart. This feature allows a possibility for individu-

als to remain alone for a given round and not interact with anybody. Such

an individual receives a baseline payoff rather than one based upon a matrix
game. We provide sufficient conditions on the payoff matrix that will guaran-

tee fixation probabilities to be monotone relative to the baseline payoff. We

then apply the findings to the Prisoner’s Dilemma and Hawk-Dove games. In
both cases, the possibility that an individual might remain alone increases the

chances that cooperation or non-aggression fixes within the population. More-

over, weak selection models overlap with our model, and we consider how one
can generalize our model even further.

1. Introduction

The question of how natural selection can lead to cooperative behavior has fasci-
nated evolutionary biologists for several decades [22] and mathematicians have cre-
ated many models to answer the question. Until recently, most models considered
deterministic dynamics in infinite populations, see for example [19, 15, 16, 17, 9].
Nevertheless, stochastic evolutionary dynamics in finite population is also well es-
tablished, see for example [20, 21, 11, 24, 30]. One can consider stochastic models
either in well mixed populations as in [29, 23], or more generally in structured
populations as in [18, 4, 1]. All such models have been successfully applied to bet-
ter understanding of the conditions for the evolution of cooperation, most notably
through the Prisoner’s Dilemma game [2] such as in [25], and Hawk-Dove game [19]
such as in [14, 5].

In this paper, we consider the evolution of cooperation in finite populations
where interactions might be avoided. In Section 2 we adapt the general framework
of [7] to model a scenario where two individuals can interact only if they both
intend to interact with one another. This allows a possibility that individuals may
remain alone and do not interact with anybody, thereby receiving a default payoff
rather than a payoff derived from a matrix game. In Section 3 we provide general
conditions on the payoff matrix that will guarantee fixation probabilities to be
monotone with respect to the baseline payoff. We then apply these findings to the
Prisoner’s Dilemma game in Section 4 and the Hawk-Dove game in Section 5. We
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conclude with a discussion of both the connection between our results and classical
models involving weak selection and also how one can further generalize the model.

2. Model

Consider a finite population of N ≥ 3 individuals that exhibit one of two be-
havioral types, labeled A and B. The individuals interact in pairwise fashion and
thereby earn payoffs (reproductive fitness) which then drives the evolution of trait
frequencies according to a standard Moran process [21]. At each time step, an
individual is chosen for reproduction in proportion to its relative fitness. The off-
spring - identical to the parent - replaces another randomly chosen individual in
the population. Thus the total population size remains constant.

We are interested in the fixation probability of trait A when it is initially rare
(1 individual) amidst a population of N − 1 type B individuals. As in [29, 1], the
interactions are modeled as a symmetric 2× 2 game with a payoff matrix

(A B

A a b
B c d

)
(1)

where a is the payoff to a type A individual when it interacts with another type
A individual, b is the payoff to a type A individual when it interacts with a type
B individual, and so forth. In classical models such as [29, 18], every individual
would receive an average payoff from all possible interactions; specifically, if there
are i type A individuals, then a type A individual would receive

fi =
1

N − 1

(
a(i− 1) + b(N − i)

)
, (2)

because the individual can interact with any of the remaining (i− 1) type A indi-
viduals and any of (N− i) type B individuals. Similarly, a type B individual would
receive

gi =
1

N − 1

(
ci+ d(N − i− 1)

)
. (3)

In our current model, we introduce a phase at the start of each time step wherein
individuals uniformly randomly select a potential interaction partner. For individ-
ual I, we denote this potential partner as T (I). If I = T (T (I)), then both individ-
uals have agreed to interact and the individuals receive those payoffs assigned by
(1). Mutual agreement happens with probability 1

N−1 . If individual I does not find

a partner in a given round, which occurs with probability N−2
N−1 , then individual I

receives a default payoff α. Consequently, when there are i type A individuals in a
population of size N , the average payoff for type A individuals is

Fi =
1

N − 1
fi +

N − 2

N − 1
α, (4)

and for type B individuals the payoff is

Gi =
1

N − 1
gi +

N − 2

N − 1
α. (5)

Considering first the individual fitness given directly by the payoffs fi and gi, we
can calculate the fixation probability for an initially rare trait A as in [29] by

ρA =
1

1 +
∑N−1
j=1

∏j
k=1

gk
fk

. (6)
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In the current model with payoffs Fi and Gi, the fixation probability of trait A
becomes

%A =
1

1 +
∑N−1
j=1

∏j
k=1

Gk

Fk

. (7)

Following [29], a probability of fixation of behavioral type B when it is initially
rare (1 individual) is given by the related formula

ρB = ρA

N−1∏
k=1

gk
fk

(8)

and similarly,

%B = %A

N−1∏
k=1

Gk
Fk

. (9)

For fixed values of a, b, c, and d, the fixation probabilities %A and %B are scalar
functions of α with ρA = %A(0) and ρB = %B(0).

3. Main Result

Theorem 3.1. For any given non-negative payoff matrix (1) that resolves inter-
actions in a population with N individuals, if either the pair of conditions

b− d < a− c, and (10)

c >
1

N − 1

(
a(N − 2) + b

)
, (11)

or the pair of conditions

b− d > a− c, and (12)

b <
1

N − 1

(
d(N − 2) + c

)
, (13)

hold true, then the fixation probability %A is increasing in α while %B is decreasing
in α. Moreover, for α > 0, fixation probabilities for initially rare types are well
ordered, with

ρB > %B >
1

N
> %A > ρA. (14)

Proof. Let h(i) = (gi − fi)(N − 1) = ci+ d(N − i− 1)− a(i− 1)− b(N − i). This
is a linear function of i, and its slope is

dh

di
= (b− d)− (a− c). (15)

If condition (10) is satisfied, h is strictly decreasing and the minimum value of h
occurs when i = N − 1. This value is

h(N − 1) = c(N − 1)− a(N − 2)− b (16)

which is positive under condition (11). Similarly, if (12) is satisfied, h is strictly
increasing, and the minimum of h occurs at i = 1. The minimum value

h(1) = c+ d(N − 2)− b(N − 1) (17)

is positive under condition (13). Thus under either pair of conditions, h(i) > 0 for
all 1 ≤ i < N .
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Now, consider Hi = Gi

Fi
. It follows that under conditions (10) and (11) (or (12)

and (13))
dHi

dα
= − (N − 2)

(N − 1)

h(i)(
fi + (N − 2)α

)2 < 0. (18)

Thus, by (7), 1/%A is decreasing in α, or equivalently stated, %A is increasing. In
like manner, we can conclude that %B is decreasing. Furthermore, as the default
payoff increases, the relative fitness of all individuals approaches the same value
regardless of type, limα→∞

Gi

Fi
= 1. Selection is neutral in this instance, and the

probability of fixation for a rare type is 1/N . Consequently,

ρB > %B > lim
α→∞

%B =
1

N
= lim
α→∞

%A > %A > ρA. (19)

�

By similar arguments as Theorem 3.1, one could also show that if (10) held
true while (13) was false (or (12) and (11), respectively), then %A would be non-
increasing in α with %A < ρA.

4. Prisoner’s Dilemma

First we apply Theorem 3.1 to the Prisoner’s Dilemma game, which has the
payoff matrix (C D

C R S
D T P

)
. (20)

In this game, strategy C is cooperation, and D is defection. It is assumed that
T > R > P > S, see e.g. [2], where T is the temptation to defect, R is the reward
for a pair of cooperators, P is the punishment for a defecting pair, and S is the
sucker payoff for a cooperator being exploited by a defector.

For such payoffs, (11) and (13) are necessarily true since

1

N − 1

(
P (N − 2) + T

)
>

1

N − 1

(
P (N − 2) + P

)
= P > S, (21)

and also
1

N − 1

(
R(N − 2) + S

)
<

1

N − 1

(
R(N − 2) +R

)
= R < T. (22)

Thus either (10) and (11) or (12) and (13) must be satisfied. Consequently, %C > ρC
for all α, and cooperators are more likely to go to fixation if they are allowed to be
alone. See Figure 1.

5. Hawk-Dove Game

Now we apply Theorem 3.1 to the Hawk-Dove game defined by the payoff matrix

( H D

H V−C
2 V

D 0 V
2

)
. (23)

H stands for a Hawk, or an aggressive individual, while D stands for a Dove, or
a passive/cooperative individual. V is a reward for which the individuals fight,
and C is the cost of the aggressive contest. In its traditional form, the cost of an
aggressive fight outweighs the value of the resource, C > V ; however, the matrix
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Figure 1. Fixation probabilities for the Prisoner’s Dilemma
game. Here T = 5, R = 4, P = 2, S = 1. (a) N = 4, (b) N = 10.
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Figure 2. Fixation probabilities for the Hawk-Dove game. Here
N = 4, V = 1, c0 = 3. (a) C = 3, (b) C = 4.7.

(1) presumes non-negative entries. We may add a positive constant c0 to all entries
of the matrix (23) to ensure this condition, but this transformation has no effect
on conditions (10)-(13). Since

V − V

2
>
V − C

2
, (24)

condition (12) is satisfied. If C < N
N−2V , then

0 <
1

N − 1

(
V − C

2
(N − 2) + V

)
(25)

and condition (11) is not satisfied. Consequently, %H < ρH and %H decreases with
α while ρD < %D and %D decreases with α. Note that

V >
1

N − 1

(
V

2
(N − 2) + 0

)
, (26)

so condition (13) is never satisfied. Consequently, if C > N
N−2V , then Theorem 3.1

is no longer applicable. Moreover, for large C, %H can be increasing for some range
of α and decreasing for other values of α as seen in Figure 2. We can see that being
alone helps Doves gain greater fixation probability.
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6. Discussion

We considered the evolution of cooperation in a finite population in a scenario
where two individuals can interact only if both intend to interact with one another.
Those individuals that did not interact with another individual receive a baseline
payoff rather than always receive a payoff based on a matrix game.

Many models of evolution in finite populations (see [18, 25] but also counter-
examples [6, 13]), consider weak selection where fitnesses fi and gi are transformed

into F̃i = 1 + wfi and G̃i = 1 + wgi. These models then consider the dynamics
and fixation probabilities that such fitness functions have in the limit of w → 0+.

If w = 1
(N−2)α , then Gi

Fi
= G̃i

F̃i
and so the fixation probabilities in weak selection

corresponds to fixation probabilities in our model. Unlike models of weak selection,
our model allows the study of more general situation when the individuals differ
not only in the interactions but in the baseline fitness.

Our approach can be seen as a special case of a general framework from [7], and
also [10, 5]. In this interpretation, we may view individuals as occupants of vertices
of a complete graph that pick an edge to an adjacent vertex as a potential place
to meet and interact with a neighbor. We considered that the meeting places are
picked uniformly at random; however it is possible to incorporate some preference
or location bias in selecting an edge. This variation of the model mirrors studies in
[3, 28, 12].

By considering individuals as occupants on a general graph, our model extends
naturally to structured populations. A further development would allow the inter-
actions and baseline fitness to vary by individual and location. Since a population
structure has a profound effect on the fixation probability [8], it will therefore be
interesting to study the dynamics on a general population structure. Once we ex-
tend our model there, it will also be important to study various updating rules, e.g.
[13, 27] as they are same as the Moran process in the homogeneous population but
differ from the Moran process in general [26].
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[10] Marie Bruni, Mark Broom, and Jan Rychtář. Analysing territorial models on graphs. Involve,
a Journal of Mathematics, 7(2):129–149, 2013.

[11] Dean Foster and Peyton Young. Stochastic evolutionary game dynamics. Theoretical Popu-

lation Biology, 38(2):219–232, 1990.
[12] Nina Galanter, Dennis Silva Jr., Jonathan Rowell, and Jan Rychtář. The territorial raider
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